Menu Close

calculate-0-pi-2-x-sinx-dx-




Question Number 40868 by math khazana by abdo last updated on 28/Jul/18
calculate  ∫_0 ^(π/2)   (x/(sinx))dx  .
calculate0π2xsinxdx.
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
(Π/2)=1.57  so 0<∫_0 ^(Π/2) (x/(sinx))≤18   pls check
Π2=1.57so0<0Π2xsinx18plscheck
Commented by maxmathsup by imad last updated on 29/Jul/18
the Q is calculate ∫_(π/3) ^(π/2)   (x/(sinx))dx .
theQiscalculateπ3π2xsinxdx.
Commented by math khazana by abdo last updated on 30/Jul/18
let I = ∫_(π/3) ^(π/2)    (x/(sinx))dx changement tan((x/2))=t give  I = ∫_(1/( (√3))) ^1    ((2arctant)/((2t)/(1+t^2 ))) ((2dt)/(1+t^2 )) =2 ∫_(1/( (√3))) ^1    ((arctant)/t) dt  let introduce the parametric function  f(x) = ∫_(1/( (√3))) ^1   ((arctan(xt))/t)dt we have  f^′ (x)= ∫_(1/( (√3))) ^1   (t/(t(1+x^2 t^2 )))dt =∫_(1/( (√3))) ^1    (dt/(1+x^2 t^2 ))  =_(xt=u)   ∫_(x/( (√3))) ^x     (1/(1+u^2 )) (du/x) =(1/x) ∫_(x/( (√3))) ^x  (du/(1+u^2 ))  =(1/x)[arctan(u)]_(x/( (√3))) ^x =(1/x){arctan(x)−arctan((x/( (√3))))}⇒  f(x)= ∫_0 ^x   ((arctan(t))/t)dt −∫_0 ^x     ((arctan((t/( (√3)))))/t)dt +λ  λ=f(0)=0  but ∫_0 ^x   ((arctan((t/( (√3)))))/t)dt  =_((t/( (√3)))=u)   ∫_0 ^(x/( (√3)))   ((arctan(u))/(u(√3))) (√3)du =∫_0 ^(x/( (√3)))   ((arctan(t))/t)dt⇒  f(x)= ∫_0 ^x   ((arctan(t))/t)dt−∫_0 ^(x/( (√3)))   ((arctan(t))/t)dt  I =2f(1) =2{ ∫_0 ^1  ((arctant)/t)dt −∫_0 ^(1/( (√3)))  ((arctant)/t)dt}  we have arctan^′ (t)=(1/(1+t^2 )) =Σ_(n=0) ^∞ (−1)^n t^(2n) ⇒  arctant = Σ_(n=0) ^∞ (((−1)^n )/(2n+1))t^(2n+1) ⇒  ((arctant)/t) =Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) t^(2n) ⇒  ∫_0 ^1   ((arctant)/t)dt =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))∫_0 ^1  t^(2n) dt  =Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 )) (sum knownby fourier serie)  ∫_0 ^(1/( (√3)))  ((arctant)/t)dt =Σ_(n=0) ^∞   (((−1)^n )/((n+1+))[(1/(2n+1))t^(2n+1) ]_0 ^(1/( (√3)))   =Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^2 )) ((1/( (√3))))^(2n+1)  ...
letI=π3π2xsinxdxchangementtan(x2)=tgiveI=1312arctant2t1+t22dt1+t2=2131arctanttdtletintroducetheparametricfunctionf(x)=131arctan(xt)tdtwehavef(x)=131tt(1+x2t2)dt=131dt1+x2t2=xt=ux3x11+u2dux=1xx3xdu1+u2=1x[arctan(u)]x3x=1x{arctan(x)arctan(x3)}f(x)=0xarctan(t)tdt0xarctan(t3)tdt+λλ=f(0)=0but0xarctan(t3)tdt=t3=u0x3arctan(u)u33du=0x3arctan(t)tdtf(x)=0xarctan(t)tdt0x3arctan(t)tdtI=2f(1)=2{01arctanttdt013arctanttdt}wehavearctan(t)=11+t2=n=0(1)nt2narctant=n=0(1)n2n+1t2n+1arctantt=n=0(1)n2n+1t2n01arctanttdt=n=0(1)n2n+101t2ndt=n=0(1)n(2n+1)2(sumknownbyfourierserie)013arctanttdt=n=0(1)n(n+1+[12n+1t2n+1]013=n=0(1)n(2n+1)2(13)2n+1

Leave a Reply

Your email address will not be published. Required fields are marked *