Menu Close

calculate-0-pi-2-xcosx-cos-2x-dx-




Question Number 120316 by Bird last updated on 30/Oct/20
calculate ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx
calculate0π2xcosxcos(2x)dx
Answered by mathmax by abdo last updated on 30/Oct/20
let I=∫_0 ^(π/2)  (x/(cosx+sinx))dx we have proved that I=(π/(4(√2)))ln((((√2)+1)/( (√2)−1)))  changement x =t−(π/2) give  I =−∫_0 ^(π/2)  ((t−(π/2))/(sint−cost))dt =(π/2)∫_0 ^(π/2)  (dt/(sint−cost))−∫_0 ^(π/2)  (t/(sint−cost))  =∫_0 ^(π/2)   (x/(cosx−sinx))dx +(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx)) ⇒  2I =∫_0 ^(π/2) x((1/(cosx+sinx))+(1/(cosx−sinx)))dx+(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx))  =∫_0 ^(π/2) ((x(2cosx))/(cos^2 x−sin^2 x))dx+(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx))  ⇒2 ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =2I−(π/2)∫_0 ^(π/2)  (dx/(sinx−cosx)) ⇒  ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =I−(π/4)∫_0 ^(π/2)  (dx/(sinx−cosx))  we have  ∫_0 ^(π/2)  (dx/(sinx−cosx)) =_(tan((x/2))=t)     ∫_0 ^1  ((2dt)/((1+t^2 )(((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 )))))  =∫_0 ^1  ((2dt)/(2t−1+t^2 )) =2 ∫_0 ^1  (dt/(t^2 +2t−1)) =2∫_0 ^1  (dt/((t+1)^2 −2))  =2∫_0 ^1  (dt/((t+1−(√2))(t+1+(√2)))) =(2/(2(√2)))∫_0 ^1  ((1/(t+1−(√2)))−(1/(t+1+(√2))))  =(1/( (√2)))[ln∣((t+1−(√2))/(t+1+(√2)))∣]_0 ^1  =(1/( (√2)))ln∣((2−(√2))/(2+(√2)))∣−ln∣((1−(√2))/(1+(√2)))∣  =(1/( (√2)))ln(((2−(√2))/(2+(√2))))−ln((((√2)−1)/( (√2)+1))) ⇒  ∫_0 ^(π/2)  ((xcosx)/(cos(2x)))dx =(π/(4(√2)))ln((((√2)+1)/( (√2)−1)))−(π/(4(√2)))ln(((2−(√2))/(2+(√2))))+(π/4)ln((((√2)−1)/( (√2)+1)))  =(π/4)((1/( (√2)))−1)ln((((√2)+1)/( (√2)−1)))−(π/(4(√2)))ln(((2−(√2))/(2+(√2))))
letI=0π2xcosx+sinxdxwehaveprovedthatI=π42ln(2+121)changementx=tπ2giveI=0π2tπ2sintcostdt=π20π2dtsintcost0π2tsintcost=0π2xcosxsinxdx+π20π2dxsinxcosx2I=0π2x(1cosx+sinx+1cosxsinx)dx+π20π2dxsinxcosx=0π2x(2cosx)cos2xsin2xdx+π20π2dxsinxcosx20π2xcosxcos(2x)dx=2Iπ20π2dxsinxcosx0π2xcosxcos(2x)dx=Iπ40π2dxsinxcosxwehave0π2dxsinxcosx=tan(x2)=t012dt(1+t2)(2t1+t21t21+t2)=012dt2t1+t2=201dtt2+2t1=201dt(t+1)22=201dt(t+12)(t+1+2)=22201(1t+121t+1+2)=12[lnt+12t+1+2]01=12ln222+2ln121+2=12ln(222+2)ln(212+1)0π2xcosxcos(2x)dx=π42ln(2+121)π42ln(222+2)+π4ln(212+1)=π4(121)ln(2+121)π42ln(222+2)

Leave a Reply

Your email address will not be published. Required fields are marked *