Menu Close

calculate-0-pi-2xsinx-3-cos-2x-dx-




Question Number 57825 by maxmathsup by imad last updated on 13/Apr/19
calculate ∫_0 ^π   ((2xsinx)/(3 +cos(2x)))dx .
calculate0π2xsinx3+cos(2x)dx.
Commented by maxmathsup by imad last updated on 13/Apr/19
let I =∫_0 ^π   ((2x sinx)/(3 +cos(2x))) dx  changement x =π −t give   I =∫_0 ^π  ((2(π−t)sint)/(3+cos(2t)))dt = 2π ∫_0 ^π   ((sint)/(3+cos(2t))) −I ⇒2I =2π ∫_0 ^π    ((sint)/(3+cos(2t)))dt   ⇒I =π ∫_0 ^π    ((sint)/(3+cos(2t))) dt  but  ∫_0 ^π    ((sint)/(3+cos(2t)))dt  =∫_0 ^π   ((sint)/(3+2cos^2 t−1)) dt =∫_0 ^π   ((sint dt)/(2(1+cos^2 t)))  =_(u =cost)       −∫_(−1) ^1   ((−du)/(2(1+u^2 ))) =(1/2)∫_(−1) ^1    (du/(1+u^2 ))  =(1/2)[arctanu]_(−1) ^1 =(1/2)((π/2)) =(π/4) ⇒  ★I =(π^2 /4) ★
letI=0π2xsinx3+cos(2x)dxchangementx=πtgiveI=0π2(πt)sint3+cos(2t)dt=2π0πsint3+cos(2t)I2I=2π0πsint3+cos(2t)dtI=π0πsint3+cos(2t)dtbut0πsint3+cos(2t)dt=0πsint3+2cos2t1dt=0πsintdt2(1+cos2t)=u=cost11du2(1+u2)=1211du1+u2=12[arctanu]11=12(π2)=π4I=π24
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
∫_0 ^π ((2(π−x)sin(π−x))/(3+cos2(π−x)))dx  ∫_0 ^π ((2πsinx−2xsinx)/(3+cos2x))dx  2I=∫_0 ^π ((2πsinx)/(3+cos2x))dx  (I/π)=∫_0 ^π ((−d(cosx))/(3+2cos^2 x−1))  ((−I)/π)=(1/2)∫_0 ^π ((d(cosx))/(1+cos^2 x))  ((−I)/π)=(1/2)×∣tan^(−1) (cosx)∣_0 ^π   ((−I)/π)=(1/2)×{tan^(−1) (−1)−tan^(−1) (1)}  ((−I)/π)=(1/2)×−2×(π/4)  I=(π^2 /4)
0π2(πx)sin(πx)3+cos2(πx)dx0π2πsinx2xsinx3+cos2xdx2I=0π2πsinx3+cos2xdxIπ=0πd(cosx)3+2cos2x1Iπ=120πd(cosx)1+cos2xIπ=12×tan1(cosx)0πIπ=12×{tan1(1)tan1(1)}Iπ=12×2×π4I=π24
Commented by maxmathsup by imad last updated on 13/Apr/19
sir tanmay your answer is correct thanks.
sirtanmayyouransweriscorrectthanks.
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
most welcome sir
mostwelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *