Menu Close

calculate-0-pi-3-sinx-cos-cosx-1-2sin-cosx-dx-




Question Number 35588 by abdo mathsup 649 cc last updated on 20/May/18
calculate ∫_0 ^(π/3)     ((sinx cos(cosx))/(1+2sin(cosx)))dx
calculate0π3sinxcos(cosx)1+2sin(cosx)dx
Commented by abdo imad last updated on 21/May/18
we remark that (sin(cosx))^′  =−sinx cos(cosx) ⇒  I =−(1/2) ∫_0 ^(π/3)  (((1+2sin(cosx))^′ )/(1+2 sin(cosx)))dx  =−(1/2)[ln∣ 1+2sin(cosx)∣]_0 ^(π/3) =  =−(1/2){ln(1+2sin((1/2)) −ln(1 +2sin(1)}
weremarkthat(sin(cosx))=sinxcos(cosx)I=120π3(1+2sin(cosx))1+2sin(cosx)dx=12[ln1+2sin(cosx)]0π3==12{ln(1+2sin(12)ln(1+2sin(1)}
Answered by RAMANUJAN last updated on 20/May/18
[ln{(2Π+3)/3}]/2−0  is the correct answer
[ln{(2Π+3)/3}]/20isthecorrectanswer

Leave a Reply

Your email address will not be published. Required fields are marked *