Menu Close

calculate-0-pi-3-sinxdx-cosx-2-ln-cosx-




Question Number 39383 by maxmathsup by imad last updated on 05/Jul/18
calculate  ∫_0 ^(π/3)       ((sinxdx)/(cosx(2+ln(cosx))) .
calculate0π3sinxdxcosx(2+ln(cosx).
Commented by math khazana by abdo last updated on 06/Jul/18
chanvement  cosx =t give  I  = ∫_1 ^(1/2)      ((√(1−t^2 ))/(t(2+ln(t)))) ((−dt)/( (√(1−t^2 ))))  = ∫_(1/2) ^1       (dt/(t(2 +ln(t)))) then we do the chang.  ln(t)=u ⇒I = ∫_(−ln(2)) ^0  ((e^u  du)/(e^u (2 +u)))  = ∫_(−ln(2)) ^0     (du/(2+u)) =[ln∣2+u∣]_(−ln(2)) ^0   =ln(2) −ln(2−ln(2)) .
chanvementcosx=tgiveI=1121t2t(2+ln(t))dt1t2=121dtt(2+ln(t))thenwedothechang.ln(t)=uI=ln(2)0eudueu(2+u)=ln(2)0du2+u=[ln2+u]ln(2)0=ln(2)ln(2ln(2)).
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
t=2+lncosx  t=2   when x=0  t=2+ln((1/2))=2−ln2  dt=((−sinx)/(cosx))dx  ∫_2 ^(2−ln2)    ((−dt)/t)  −∣lnt∣_2 ^(2−ln2)   −ln∣((2−ln2)/2)∣
t=2+lncosxt=2whenx=0t=2+ln(12)=2ln2dt=sinxcosxdx22ln2dttlnt22ln2ln2ln22
Commented by math khazana by abdo last updated on 06/Jul/18
answer correct sir Tanmay thanks.
answercorrectsirTanmaythanks.

Leave a Reply

Your email address will not be published. Required fields are marked *