Question Number 83441 by mathmax by abdo last updated on 02/Mar/20
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\mathrm{2}{tanx}}{dx} \\ $$
Answered by M±th+et£s last updated on 06/Mar/20
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}\:{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}{\:\sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)}\:\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}}\:{dx} \\ $$$${y}=\sqrt{\mathrm{1}+\mathrm{2}{tanx}}\:{dy}\:=\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{\mathrm{1}+\mathrm{2}{tan}\left({x}\right)}} \\ $$$$\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}={tan}\left({x}\right) \\ $$$${if}\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$$${if}\:{x}=\frac{\pi}{\mathrm{4}}\:{y}=\sqrt{\mathrm{3}} \\ $$$$\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{{y}^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:{dy} \\ $$$$\mathrm{4}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{{y}^{\mathrm{2}} }{{y}^{\mathrm{4}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{5}}{dy}=\mathrm{2}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{{y}^{\mathrm{2}} −\sqrt{\mathrm{5}}\:+{y}^{\mathrm{2}} +\sqrt{\mathrm{5}}}{{y}^{\mathrm{4}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{5}}{dy} \\ $$$$ \\ $$$$=\mathrm{2}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{{y}^{\mathrm{2}} }}{{y}^{\mathrm{2}} +\frac{\mathrm{5}}{{y}^{\mathrm{2}} }−\mathrm{2}}{dy}+\mathrm{2}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{\mathrm{1}+\frac{\mathrm{5}}{{y}^{\mathrm{2}} }}{{y}^{\mathrm{2}} +\frac{\mathrm{5}}{{y}^{\mathrm{2}} }−\mathrm{2}}\:{dy} \\ $$$$=\mathrm{2}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{{d}\left({y}+\frac{\sqrt{\mathrm{5}}}{{y}}\right)}{\left({y}+\frac{\sqrt{\mathrm{5}}}{{y}}\right)^{\mathrm{2}} −\mathrm{2}−\mathrm{2}\sqrt{\mathrm{5}}}\:+\:\mathrm{2}\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \frac{{d}\left({y}−\frac{\sqrt{\mathrm{5}}}{{y}}\right)}{\left({y}−\frac{\sqrt{\mathrm{5}}}{{y}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}} \\ $$$$ \\ $$$$=\frac{−\mathrm{2}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}}\left[{tanh}^{−\mathrm{1}} \left(\frac{{y}+\frac{\sqrt{\mathrm{5}}}{{y}}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}}\right)\right]_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} +\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}}\left[{tan}^{−\mathrm{1}} \left(\frac{{y}−\frac{\sqrt{\mathrm{5}}}{{y}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}}\right)\right]_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \\ $$$$\frac{−\mathrm{2}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}+\mathrm{2}}}\left[{tanh}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}\:+\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}}\right)−{tanh}^{−\mathrm{1}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}}\right)\right]+\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}}\left[{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{3}}−\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}}\right)−{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}}\right)\right] \\ $$$$ \\ $$