Menu Close

calculate-0-pi-4-1-2tanx-dx-




Question Number 83441 by mathmax by abdo last updated on 02/Mar/20
calculate ∫_0 ^(π/4) (√(1+2tanx))dx
calculate0π41+2tanxdx
Answered by M±th+et£s last updated on 06/Mar/20
∫_0 ^(π/4) (√(1+2tan(x))) dx=∫_0 ^(π/4) ((1+2tan(x))/( (√(1+2tan(x)))))dx  =∫_0 ^(π/4) ((1+2tan(x))/(1+tan^2 (x))) ((sec^2 (x))/( (√(1+2tan(x))))) dx  y=(√(1+2tanx)) dy =((sec^2 (x))/( (√(1+2tan(x)))))  ((y^2 −1)/2)=tan(x)  if x=0 y=1  if x=(π/4) y=(√3)  ∫_1 ^(√3) (y^2 /(1+(((y^2 −1)/2))^2 )) dy  4∫_1 ^(√3) (y^2 /(y^4 −2y^2 +5))dy=2∫_1 ^(√3) ((y^2 −(√5) +y^2 +(√5))/(y^4 −2y^2 +5))dy    =2∫_1 ^(√3) ((1−((√5)/y^2 ))/(y^2 +(5/y^2 )−2))dy+2∫_1 ^(√3) ((1+(5/y^2 ))/(y^2 +(5/y^2 )−2)) dy  =2∫_1 ^(√3) ((d(y+((√5)/y)))/((y+((√5)/y))^2 −2−2(√5))) + 2∫_1 ^(√3) ((d(y−((√5)/y)))/((y−((√5)/y))^2 +2(√5)−2))    =((−2)/( (√(2+2(√5)))))[tanh^(−1) (((y+((√5)/y))/( (√(2+2(√5))))))]_1 ^(√3) +(2/( (√(2(√5)−2))))[tan^(−1) (((y−((√5)/y))/( (√(2(√5)−2)))))]_1 ^(√3)   ((−2)/( (√(2(√5)+2))))[tanh^(−1) ((((√3) +((√5)/( (√3))))/( (√(2+2(√5))))))−tanh^(−1) (((1+(√5))/( (√(2+2(√5))))))]+(2/( (√(2(√5)−2))))[tan^(−1) ((((√3)−((√5)/( (√3))))/( (√(2(√5)−2)))))−tan^(−1) (((1−(√5))/( (√(2(√5)−2)))))]
0π41+2tan(x)dx=0π41+2tan(x)1+2tan(x)dx=0π41+2tan(x)1+tan2(x)sec2(x)1+2tan(x)dxy=1+2tanxdy=sec2(x)1+2tan(x)y212=tan(x)ifx=0y=1ifx=π4y=313y21+(y212)2dy413y2y42y2+5dy=213y25+y2+5y42y2+5dy=21315y2y2+5y22dy+2131+5y2y2+5y22dy=213d(y+5y)(y+5y)2225+213d(y5y)(y5y)2+252=22+25[tanh1(y+5y2+25)]13+2252[tan1(y5y252)]13225+2[tanh1(3+532+25)tanh1(1+52+25)]+2252[tan1(353252)tan1(15252)]

Leave a Reply

Your email address will not be published. Required fields are marked *