Menu Close

calculate-0-pi-4-1-3-sin-x-cos-x-n-dx-1-n-




Question Number 191342 by mnjuly1970 last updated on 23/Apr/23
      calculate...   Ω ={ ∫_0 ^( (π/4)) (  1 + (√3) sin(x) + cos(x) )^( n) dx}^(1/n) = ?
calculateΩ={0π4(1+3sin(x)+cos(x))ndx}1n=?
Answered by witcher3 last updated on 24/Apr/23
∫(1+(√3)sin(x)+cos(x))^n dx  (√3)sin(x)+cos(x)=2sin(x+(π/6)),y=x+(π/6)=g(x)  ⇔∫(1+2sin(y))^n dy=  let w=sin(y)  ⇔∫(((1+2w)^n )/( (√(1−w^2 ))))dw,t=1+2w⇒w=((t−1)/2)  =∫(t^n /( (√((1−(((t−1)/2))^2 )))),(dt/2)  =(1/2)∫t^n (((3−t)/2))^(−(1/2)) (((t+1)/2))^(−(1/2)) dt  let F(s)=(1/2)∫_0 ^s t^n (((3−t)/2))^(−(1/2)) (((t+1)/2))^(−(1/2)) dt  t=sz⇒dt=sdz  f(s)=(1/( (√3)))s^(n+1) ∫_0 ^1 z^n (1−((sz)/3))^(−(1/2)) (1+sz)^(−(1/2)) dz  We have  F_1 (a;b,c;d;x;y).((Γ(a)Γ(d−a))/(Γ(d)))=∫_0 ^1 u^(a−1) (1−u)^(d−a−1) (1−ux)^(−b) (1−uy)^(−c) du  Hypergeomtric Functiom of Two variable  f(s)=(s^(n+1) /( (√3))).((Γ(n+1)Γ(1))/(Γ(n+2))).F_1 (n+1;(1/2),(1/2);n+2;(s/3);−s)  g(x)=(((1+(√3)sin(x)+cos(x))^(n+1) )/((n+1)(√3)))F_1 (n+1;(1/2),(1/2);n+2;−2sin(x+(π/6))−1;(1/3)(2sin(x+(π/6))+1))+c  ∫_0 ^(π/4) (1+(√3)sin(x)+cos(x))^n dx=g((π/4))−g(0)  long expression  =(1/((n+1)(√3))){((√(2+(√3)))+1)^(n+1) F_1 (n+1;(1/2),(1/2);n+2;−(1+(√((√3)+2)));((1+(√((√3)+2)))/3))  −2^(n+1) F_1 (n+1;(1/2),(1/2);n+2;−2,(2/3))}
(1+3sin(x)+cos(x))ndx3sin(x)+cos(x)=2sin(x+π6),y=x+π6=g(x)(1+2sin(y))ndy=letw=sin(y)(1+2w)n1w2dw,t=1+2ww=t12=tn(1(t12)2,dt2=12tn(3t2)12(t+12)12dtletF(s)=120stn(3t2)12(t+12)12dtt=szdt=sdzf(s)=13sn+101zn(1sz3)12(1+sz)12dzWehaveF1(a;b,c;d;x;y).Γ(a)Γ(da)Γ(d)=01ua1(1u)da1(1ux)b(1uy)cduHypergeomtricFunctiomofTwovariablef(s)=sn+13.Γ(n+1)Γ(1)Γ(n+2).F1(n+1;12,12;n+2;s3;s)g(x)=(1+3sin(x)+cos(x))n+1(n+1)3F1(n+1;12,12;n+2;2sin(x+π6)1;13(2sin(x+π6)+1))+c0π4(1+3sin(x)+cos(x))ndx=g(π4)g(0)longexpression=1(n+1)3{(2+3+1)n+1F1(n+1;12,12;n+2;(1+3+2);1+3+23)2n+1F1(n+1;12,12;n+2;2,23)}

Leave a Reply

Your email address will not be published. Required fields are marked *