Question Number 87534 by mathmax by abdo last updated on 04/Apr/20
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$
Commented by mathmax by abdo last updated on 06/Apr/20
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({asinx}\right)}{{sinx}}{dx}\:{with}\:{a}>\mathrm{0} \\ $$$${f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sinx}}{\left(\mathrm{1}+{a}^{\mathrm{2}} \:{sin}^{\mathrm{2}} {x}\right){sinx}}{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} ×\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{dx}}{\mathrm{2}+{a}^{\mathrm{2}} −{a}^{\mathrm{2}} {cos}\left(\mathrm{2}{x}\right)}\:=_{\mathrm{2}{x}={t}} \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{\mathrm{2}\left(\mathrm{2}+{a}^{\mathrm{2}} −{a}^{\mathrm{2}} {cost}\right)} \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}+{a}^{\mathrm{2}} −{a}^{\mathrm{2}} \frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{du}}{\mathrm{2}+{a}^{\mathrm{2}} \:+\left(\mathrm{2}+{a}^{\mathrm{2}} \right){u}^{\mathrm{2}} −{a}^{\mathrm{2}} \:+{a}^{\mathrm{2}} {u}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{du}}{\mathrm{2}\:+\left(\mathrm{2}+\mathrm{2}{a}^{\mathrm{2}} \right){u}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{du}}{\mathrm{1}+\left(\mathrm{1}+{a}^{\mathrm{2}} \right){u}^{\mathrm{2}} }\:=_{\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }{u}={z}} \:\:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }} \:\:\:\frac{{dz}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }\left(\mathrm{1}+{z}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }\right)\:\Rightarrow{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{{a}} \:\frac{{arctan}\left(\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }}\:{d}\alpha\:+{c} \\ $$$${c}={f}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{{a}} \:\frac{{arctan}\left(\sqrt{\left.\mathrm{1}+\alpha^{\mathrm{2}} \right)}\right.}{\:\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }}\:{d}\alpha \\ $$$${and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}….{be}\:{continued}… \\ $$