Menu Close

calculate-0-pi-4-cos-4-x-sin-2-xdx-




Question Number 40130 by maxmathsup by imad last updated on 16/Jul/18
calculate ∫_0 ^(π/4)   cos^4 x sin^2 xdx
calculate0π4cos4xsin2xdx
Commented by math khazana by abdo last updated on 21/Jul/18
let I  = ∫_0 ^(π/4)  cos^4 x sin^2 xdx by parts  I  = ∫_0 ^(π/4)  sinx cos^4 x sinx dx  =[−(1/5) cos^5 x sinx]_0 ^(π/4)   −∫_0 ^(π/4)  (−(1/5))cos^5 x cosxdx  =−(1/5)(((√2)/2))^6  +(1/5) ∫_0 ^(π/4)  cos^6 x dx but  ∫_0 ^(π/4)  cos^6 xdx = ∫_0 ^(π/4)  (((1+cos(2x))/2))^3 dx  =(1/8) ∫_0 ^(π/4) { cos^3 (2x) +3cos^2 (2x) +3cos(2x)+1)}dx  =(1/8) ∫_0 ^(π/4)  cos^3 (2x)dx +(3/8) ∫_0 ^(π/4)  ((1+cos(4x))/2)dx  +(3/8) ∫_0 ^(π/4)  cos(2x)dx +(π/(32))  but  ∫_0 ^(π/4)  cos(2x)dx=[(1/2)sin(2x)]_0 ^(π/4) =(1/2)  ∫_0 ^(π/4)   ((1+cos(4x))/2)dx =(π/8)  +(1/8)[sin(4x)]_0 ^(π/4)   =(π/8)   ∫_0 ^(π/4)  cos^3 (2x)dx = ∫_0 ^(π/4)  cos(2x)((1+cos(4x))/2)dx  =(1/2) ∫_0 ^(π/4)  cos(2x) +(1/2) ∫_0 ^(π/4)  cos(2x)cos(4x)dx  =(1/4)[sin(2x)]_0 ^(π/4)   +(1/4) ∫_0 ^(π/4) {cos(6x)+cos(2x))dx  =(1/4)  +(1/(24))[sin(6x)]_0 ^(π/4)  +(1/8)[sin(2x)]_0 ^(π/4)   =(1/4) −(1/(24)) +(1/8) =((6−1+3)/(24)) =(8/(24)) =(1/3)  so the value of I is determined.
letI=0π4cos4xsin2xdxbypartsI=0π4sinxcos4xsinxdx=[15cos5xsinx]0π40π4(15)cos5xcosxdx=15(22)6+150π4cos6xdxbut0π4cos6xdx=0π4(1+cos(2x)2)3dx=180π4{cos3(2x)+3cos2(2x)+3cos(2x)+1)}dx=180π4cos3(2x)dx+380π41+cos(4x)2dx+380π4cos(2x)dx+π32but0π4cos(2x)dx=[12sin(2x)]0π4=120π41+cos(4x)2dx=π8+18[sin(4x)]0π4=π80π4cos3(2x)dx=0π4cos(2x)1+cos(4x)2dx=120π4cos(2x)+120π4cos(2x)cos(4x)dx=14[sin(2x)]0π4+140π4{cos(6x)+cos(2x))dx=14+124[sin(6x)]0π4+18[sin(2x)]0π4=14124+18=61+324=824=13sothevalueofIisdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *