calculate-0-pi-4-cos-4-x-sin-2-xdx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40130 by maxmathsup by imad last updated on 16/Jul/18 calculate∫0π4cos4xsin2xdx Commented by math khazana by abdo last updated on 21/Jul/18 letI=∫0π4cos4xsin2xdxbypartsI=∫0π4sinxcos4xsinxdx=[−15cos5xsinx]0π4−∫0π4(−15)cos5xcosxdx=−15(22)6+15∫0π4cos6xdxbut∫0π4cos6xdx=∫0π4(1+cos(2x)2)3dx=18∫0π4{cos3(2x)+3cos2(2x)+3cos(2x)+1)}dx=18∫0π4cos3(2x)dx+38∫0π41+cos(4x)2dx+38∫0π4cos(2x)dx+π32but∫0π4cos(2x)dx=[12sin(2x)]0π4=12∫0π41+cos(4x)2dx=π8+18[sin(4x)]0π4=π8∫0π4cos3(2x)dx=∫0π4cos(2x)1+cos(4x)2dx=12∫0π4cos(2x)+12∫0π4cos(2x)cos(4x)dx=14[sin(2x)]0π4+14∫0π4{cos(6x)+cos(2x))dx=14+124[sin(6x)]0π4+18[sin(2x)]0π4=14−124+18=6−1+324=824=13sothevalueofIisdetermined. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-I-1-2-ln-1-t-t-2-dt-Next Next post: calculate-0-1-dt-1-t-2-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.