calculate-0-pi-4-cos-x-ln-cos-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32353 by abdo imad last updated on 23/Mar/18 calculate∫0π4cos(x)ln(cos(x))dx. Answered by sma3l2996 last updated on 25/Mar/18 A=∫0π/4cos(x)ln(cosx)dxbypartsu=ln(cosx)⇒u′=−tanxv′=cosx⇒v=sinxA=[sin(x)ln(cosx)]0π/4+∫0π/4sin2xcosxdx=−24ln(2)+∫0π/4(1cosx−cosx)dxlett=tan(x/2)A=−24ln(2)−[sinx]0π/4+∫0tan(π/8)dt1−t2=−24ln(2)−22+12[ln∣1+t1−t∣]0tan(π/8)A=−24ln(2)−22+12ln(21−tan(π/8)−1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-pi-2-dt-1-cos-sint-Next Next post: calculate-0-pi-4-dt-1-sin-2-t-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.