Menu Close

calculate-0-pi-4-cos-x-ln-cos-x-dx-




Question Number 32353 by abdo imad last updated on 23/Mar/18
calculate  ∫_0 ^(π/4)  cos(x)ln(cos(x))dx .
calculate0π4cos(x)ln(cos(x))dx.
Answered by sma3l2996 last updated on 25/Mar/18
A=∫_0 ^(π/4) cos(x)ln(cosx)dx  by parts   u=ln(cosx)⇒u′=−tanx  v′=cosx⇒v=sinx  A=[sin(x)ln(cosx)]_0 ^(π/4) +∫_0 ^(π/4) ((sin^2 x)/(cosx))dx=−((√2)/4)ln(2)+∫_0 ^(π/4) ((1/(cosx))−cosx)dx   let  t=tan(x/2)  A=−((√2)/4)ln(2)−[sinx]_0 ^(π/4) +∫_0 ^(tan(π/8)) (dt/(1−t^2 ))  =−((√2)/4)ln(2)−((√2)/2)+(1/2)[ln∣((1+t)/(1−t))∣]_0 ^(tan(π/8))   A=−((√2)/4)ln(2)−((√2)/2)+(1/2)ln((2/(1−tan(π/8)))−1)
A=0π/4cos(x)ln(cosx)dxbypartsu=ln(cosx)u=tanxv=cosxv=sinxA=[sin(x)ln(cosx)]0π/4+0π/4sin2xcosxdx=24ln(2)+0π/4(1cosxcosx)dxlett=tan(x/2)A=24ln(2)[sinx]0π/4+0tan(π/8)dt1t2=24ln(2)22+12[ln1+t1t]0tan(π/8)A=24ln(2)22+12ln(21tan(π/8)1)

Leave a Reply

Your email address will not be published. Required fields are marked *