Menu Close

calculate-0-pi-4-dt-1-sin-2-t-2-




Question Number 32354 by abdo imad last updated on 23/Mar/18
calculate  ∫_0 ^(π/4)        (dt/((1+sin^2 t)^2 )) .
calculate0π4dt(1+sin2t)2.
Commented by abdo imad last updated on 28/Mar/18
let put I = ∫_0 ^(π/4)   (dt/((1+sin^2 t)^2 ))  I = ∫_0 ^(π/4)    (dt/((1+((1−cos(2t))/2))^2 )) = 4∫_0 ^(π/4)     (dt/((3−cos(2t))^2 ))  =_(2t=x)  4 ∫_0 ^(π/2)       (1/((3−cosx)^2 )) (dx/2) = 2 ∫_0 ^(π/2)      (dx/((3−cosx)^2 ))  ch. tan((x/2)) =tgive  I = 2 ∫_0 ^1       (1/((3 −((1−t^2 )/(1+t^2 )))^2 )) ((2dt)/(1+t^2 )) = 4  ∫_0 ^1      (dt/((1+t^2 ) (((3 +3t^2 −1+t^2 )^2 )/((1+t^2 )^2 ))))  = 4 ∫_0 ^1     ((1+t^2 )/((2+4t^2 )^2 ))dt  = ∫_0 ^1    ((1+t^2 )/((1+2t^2 )^2 )) dt  = ∫_0 ^1   ((1+2t^2  −t^2 )/((1+2t^2 )^2 ))dt = ∫_0 ^1    (dt/((1+2t^2 ))) dt  − ∫_0 ^1   (t^2 /((1+2t^2 )^2 ))dt  ∫_0 ^1   (dt/(1+2t^2 ))dt =_(t(√2) =u)  ∫_0 ^(√2)    (1/(1+u^2 ))  (du/( (√2))) = (1/( (√2))) artan((√2))  ∫_0 ^1    (t^2 /((1+2t^2 )^2 ))dt =_(t(√2)=u)   ∫_0 ^(√2)    (1/((1+u^2 )^2 )) (u^2 /2) (du/( (√2)))  = (1/(2(√2))) ∫_0 ^(√2)    (u^2 /((1+u^2 )^2 ))du  but        ∫_0 ^(√2)   (u^2 /((1+u^2 )^2 ))du =−(1/2) ∫_0 ^(√2)  u.(((−2u)/((1+u^2 )^2 )))du by parts  =−(1/2) ( [ (u/(1+u^2 ))]_0 ^(√2)   −∫_0 ^(√2)   (u/(1+u^2 )) du)  =−(1/2) ((√2)/3) +(1/4) ∫_0 ^(√2)   ((2u)/(1+u^2 ))du =((−(√2))/6)  +(1/4) [ln(1+u^2 )]_0 ^(√2)   = ((−(√2))/6) +(1/4)ln(3) ⇒∫_0 ^1   (t^2 /((1+2t^2 )^2 ))dt =(1/(2(√2)))(((−(√2))/6) +(1/4)ln3)  = ((−1)/(12)) +((ln3)/(8(√2)))  I = (1/( (√2))) arctan((√2)) +(1/(12)) −((ln3)/(8(√2))) .
letputI=0π4dt(1+sin2t)2I=0π4dt(1+1cos(2t)2)2=40π4dt(3cos(2t))2=2t=x40π21(3cosx)2dx2=20π2dx(3cosx)2ch.tan(x2)=tgiveI=2011(31t21+t2)22dt1+t2=401dt(1+t2)(3+3t21+t2)2(1+t2)2=4011+t2(2+4t2)2dt=011+t2(1+2t2)2dt=011+2t2t2(1+2t2)2dt=01dt(1+2t2)dt01t2(1+2t2)2dt01dt1+2t2dt=t2=u0211+u2du2=12artan(2)01t2(1+2t2)2dt=t2=u021(1+u2)2u22du2=12202u2(1+u2)2dubut02u2(1+u2)2du=1202u.(2u(1+u2)2)dubyparts=12([u1+u2]0202u1+u2du)=1223+14022u1+u2du=26+14[ln(1+u2)]02=26+14ln(3)01t2(1+2t2)2dt=122(26+14ln3)=112+ln382I=12arctan(2)+112ln382.

Leave a Reply

Your email address will not be published. Required fields are marked *