Menu Close

calculate-0-pi-4-dx-cos-3-x-sin-3-x-




Question Number 34219 by abdo imad last updated on 03/May/18
calculate  ∫_0 ^(π/4)     (dx/(cos^3 x +sin^3 x))
calculate0π4dxcos3x+sin3x
Commented by abdo imad last updated on 31/May/18
I = ∫_0 ^(π/4)    (dx/((cosx +sinx)(cos^2 x −cosx sinx +sin^2 x)))  = ∫_0 ^(π/4)    (dx/((cosx +sinx)(1−cosx sinx)))  =∫_0 ^(π/2)    (dx/( (√2) cos((π/4)−x)(1−(1/2)sin(2x))))  =_((π/4)−x = t)  ∫_(π/4) ^(−(π/4))    ((−dt)/( (√2)cost(1−(1/2)sin(2((π/4)−t))))  =(√2) ∫_(−(π/4)) ^(π/4)     (dt/(cos(t)(2−sin((π/2)−2t))))  =(√2)∫_(−(π/4)) ^(π/4)     (dt/(cos(t)(2 −cos(2t))))  =2(√2) ∫_0 ^(π/4)        (dt/(cost( 2−2cos^2 t +1)))  =2(√2)∫_0 ^(π/4)    (dt/(cost( 3−2 cos^2 t)))  changement tan((t/2)) =x  give   I = 2(√2) ∫_0 ^((√2)−1)   (1/(((1−x^2 )/(1+x^2 )){ 3−2 (((1−x^2 )/(1+x^2 )))^2 })) ((2dx)/(1+x^2 ))  =4(√2) ∫_0 ^((√2)−1)     (dx/((1−x^2 ){ ((3(1+x^2 )^2  −2(1−x^2 )^2 )/((1+x^2 )^2 ))}))  =4(√2) ∫_0 ^((√2)−1)      (((1+x^2 )^2 )/((1−x^2 ){ 3(1+x^2 )^2  −2(1−x^2 )^2 }))dx  =4(√2)∫_0 ^((√2) −1)       ((x^4  +2x^2  +1)/((1−x^2 )(  3x^4  +6x^2  +3 −2x^4  +4x^2  −2}))dx  =4(√2)∫_0 ^((√2) −1)     ((x^4  +2x^2  +1)/((1−x^2 )( x^4  +10x^2  +1)))dx....be continued...
I=0π4dx(cosx+sinx)(cos2xcosxsinx+sin2x)=0π4dx(cosx+sinx)(1cosxsinx)=0π2dx2cos(π4x)(112sin(2x))=π4x=tπ4π4dt2cost(112sin(2(π4t))=2π4π4dtcos(t)(2sin(π22t))=2π4π4dtcos(t)(2cos(2t))=220π4dtcost(22cos2t+1)=220π4dtcost(32cos2t)changementtan(t2)=xgiveI=2202111x21+x2{32(1x21+x2)2}2dx1+x2=42021dx(1x2){3(1+x2)22(1x2)2(1+x2)2}=42021(1+x2)2(1x2){3(1+x2)22(1x2)2}dx=42021x4+2x2+1(1x2)(3x4+6x2+32x4+4x22}dx=42021x4+2x2+1(1x2)(x4+10x2+1)dx.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *