calculate-0-pi-4-dx-cos-3-x-sin-3-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 34219 by abdo imad last updated on 03/May/18 calculate∫0π4dxcos3x+sin3x Commented by abdo imad last updated on 31/May/18 I=∫0π4dx(cosx+sinx)(cos2x−cosxsinx+sin2x)=∫0π4dx(cosx+sinx)(1−cosxsinx)=∫0π2dx2cos(π4−x)(1−12sin(2x))=π4−x=t∫π4−π4−dt2cost(1−12sin(2(π4−t))=2∫−π4π4dtcos(t)(2−sin(π2−2t))=2∫−π4π4dtcos(t)(2−cos(2t))=22∫0π4dtcost(2−2cos2t+1)=22∫0π4dtcost(3−2cos2t)changementtan(t2)=xgiveI=22∫02−111−x21+x2{3−2(1−x21+x2)2}2dx1+x2=42∫02−1dx(1−x2){3(1+x2)2−2(1−x2)2(1+x2)2}=42∫02−1(1+x2)2(1−x2){3(1+x2)2−2(1−x2)2}dx=42∫02−1x4+2x2+1(1−x2)(3x4+6x2+3−2x4+4x2−2}dx=42∫02−1x4+2x2+1(1−x2)(x4+10x2+1)dx….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-165291Next Next post: calculate-I-0-pi-4-cosx-ln-tanx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.