Question Number 84578 by msup trace by abdo last updated on 14/Mar/20

Commented by jagoll last updated on 14/Mar/20
![∫ _0 ^(π/4) (( dx)/(((√(10)) cos (x−tan^(−1) (3))^2 )) = (1/(10)) ∫ _0 ^(π/4) sec^2 (x−tan^(−1) (3))dx =(1/(10)) tan (x−tan^(−1) (3))] _0^(π/4) = (1/(10)) [tan ((π/4)−tan^(−1) (3))−tan (−tan^(−1) (3))]](https://www.tinkutara.com/question/Q84604.png)
Commented by jagoll last updated on 14/Mar/20
![=(1/(10)) [((1−3)/(1+3)) +3 ] = (1/(10)) [(5/2)] = (1/4)](https://www.tinkutara.com/question/Q84605.png)
Commented by abdomathmax last updated on 14/Mar/20
![let f(a)=∫_0 ^(π/4) (dx/(a +cosx +3sinx)) ⇒ f^′ (a)=−∫_0 ^(π/4) (dx/((a +cosx +3sinx)^2 )) ⇒ ∫_0 ^(π/4) (dx/((cosx +3sinx)^2 ))=−f^′ (0) let explicit f(a) f(a) =_(tan((x/2))=t) ∫_0 ^((√2)−1) (1/(a+((1−t^2 )/(1+t^2 ))+3((2t)/(1+t^2 ))))((2dt)/(1+t^2 )) = ∫_0 ^((√2)−1) ((2dt)/(a(1+t^2 )+1−t^2 +6t)) =∫_0 ^((√2)−1) (dt/((a−1)t^2 +6t +a+1)) Δ^′ =9−(a−1)(a+1) =9−(a^2 −1)=10−a^2 t_1 =((−3+(√(10−a^2 )))/(a−1)) and t_2 =((−3−(√(10−a^2 )))/(a−1)) (a≠1) f(a) =∫_0 ^((√2)−1) ((2dt)/((a−1)(t−t_1 )(t−t_2 ))) =(2/(a−1)) (1/(t_1 −t_2 ))∫_0 ^((√2)−1) {(1/(t−t_1 ))−(1/(t−t_2 ))}dt =(2/(a−1))×(1/((2(√(10−a^2 )))/(a−1)))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1) =(1/( (√(10−a^2 )))){ln∣(((√2)−1−t_1 )/( (√2)−1−t_2 ))∣−ln∣(t_1 /t_2 )∣} =(1/( (√(10−a^2 )))){ln∣(((√2)−1−((−3+(√(10−a^2 )))/(a−1)))/( (√2)−1+((3+(√(10−a^2 )))/(a−1))))∣ −ln∣((−3+(√(10−a^2 )))/(−3−(√(10−a^2 ))))∣](https://www.tinkutara.com/question/Q84631.png)
Commented by abdomathmax last updated on 14/Mar/20
