Menu Close

calculate-0-pi-4-dx-cosx-3sinx-2-




Question Number 84578 by msup trace by abdo last updated on 14/Mar/20
calculate ∫_0 ^(π/4)   (dx/((cosx +3sinx)^2 ))
calculate0π4dx(cosx+3sinx)2
Commented by jagoll last updated on 14/Mar/20
∫ _0 ^(π/4) (( dx)/(((√(10)) cos (x−tan^(−1) (3))^2 ))  = (1/(10)) ∫ _0 ^(π/4)  sec^2 (x−tan^(−1) (3))dx  =(1/(10)) tan (x−tan^(−1) (3))] _0^(π/4)   = (1/(10)) [tan ((π/4)−tan^(−1) (3))−tan (−tan^(−1) (3))]
π40dx(10cos(xtan1(3))2=110π40sec2(xtan1(3))dx=110tan(xtan1(3))]0π4=110[tan(π4tan1(3))tan(tan1(3))]
Commented by jagoll last updated on 14/Mar/20
=(1/(10)) [((1−3)/(1+3)) +3 ] = (1/(10)) [(5/2)] = (1/4)
=110[131+3+3]=110[52]=14
Commented by abdomathmax last updated on 14/Mar/20
let f(a)=∫_0 ^(π/4)   (dx/(a +cosx +3sinx)) ⇒  f^′ (a)=−∫_0 ^(π/4)  (dx/((a +cosx +3sinx)^2 )) ⇒  ∫_0 ^(π/4)  (dx/((cosx +3sinx)^2 ))=−f^′ (0) let explicit f(a)  f(a) =_(tan((x/2))=t)     ∫_0 ^((√2)−1)    (1/(a+((1−t^2 )/(1+t^2 ))+3((2t)/(1+t^2 ))))((2dt)/(1+t^2 ))  = ∫_0 ^((√2)−1)    ((2dt)/(a(1+t^2 )+1−t^2  +6t))  =∫_0 ^((√2)−1)   (dt/((a−1)t^2  +6t +a+1))  Δ^′ =9−(a−1)(a+1) =9−(a^2 −1)=10−a^2   t_1 =((−3+(√(10−a^2 )))/(a−1))  and t_2 =((−3−(√(10−a^2 )))/(a−1))   (a≠1)  f(a) =∫_0 ^((√2)−1)   ((2dt)/((a−1)(t−t_1 )(t−t_2 )))  =(2/(a−1)) (1/(t_1 −t_2 ))∫_0 ^((√2)−1) {(1/(t−t_1 ))−(1/(t−t_2 ))}dt  =(2/(a−1))×(1/((2(√(10−a^2 )))/(a−1)))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1)   =(1/( (√(10−a^2 )))){ln∣(((√2)−1−t_1 )/( (√2)−1−t_2 ))∣−ln∣(t_1 /t_2 )∣}  =(1/( (√(10−a^2 )))){ln∣(((√2)−1−((−3+(√(10−a^2 )))/(a−1)))/( (√2)−1+((3+(√(10−a^2 )))/(a−1))))∣  −ln∣((−3+(√(10−a^2 )))/(−3−(√(10−a^2 ))))∣
letf(a)=0π4dxa+cosx+3sinxf(a)=0π4dx(a+cosx+3sinx)20π4dx(cosx+3sinx)2=f(0)letexplicitf(a)f(a)=tan(x2)=t0211a+1t21+t2+32t1+t22dt1+t2=0212dta(1+t2)+1t2+6t=021dt(a1)t2+6t+a+1Δ=9(a1)(a+1)=9(a21)=10a2t1=3+10a2a1andt2=310a2a1(a1)f(a)=0212dt(a1)(tt1)(tt2)=2a11t1t2021{1tt11tt2}dt=2a1×1210a2a1[lntt1tt2]021=110a2{ln21t121t2lnt1t2}=110a2{ln213+10a2a121+3+10a2a1ln3+10a2310a2
Commented by abdomathmax last updated on 14/Mar/20
f(a) =(1/( (√(10−a^2 )))){ln∣((((√2)−1)(a−1)+3−(√(10−a^2 )))/(((√2)−1)(a−1)+3+(√(10−a^2 ))))∣  −ln∣((3−(√(10−a^2 )))/(3+(√(10−a^2 ))))∣ rest calculus of f^′ (a) and f^′ (0)  ...
f(a)=110a2{ln(21)(a1)+310a2(21)(a1)+3+10a2ln310a23+10a2restcalculusoff(a)andf(0)

Leave a Reply

Your email address will not be published. Required fields are marked *