Question Number 35060 by math khazana by abdo last updated on 14/May/18

Commented by math khazana by abdo last updated on 15/May/18
![let put I = ∫_0 ^(π/4) sinx ln(cosx)dx changement cosx =t give I = ∫_1 ^((√2)/2) (√(1−t^2 )) ln(t) −(dt/( (√(1−t^2 )))) = ∫_((√2)/2) ^1 ln(t)dt = [ t ln(t) −t_ ]_((√2)/2) ^1 = −1 −((√2)/2)ln(((√2)/2)) +((√2)/2) =((√2)/2) −1 −((√2)/2){ (1/2)ln(2) −ln(2)} =((√2)/2) −1 +(1/4)(√2) ln(2) .](https://www.tinkutara.com/question/Q35112.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18
![t=cosx dt=−sinxdx ∫_1 ^(1/( (√2))) −lnt dt I′=∫lnt dt =lnt×t−t so I=−∣tlnt−t∣_1 ^(1/( (√2))) =−[{(1/( (√2)))ln((1/( (√2))))−(1/( (√2)))}−{1.ln1−1}] =−[(1/( (√2)))(−(1/2)ln2)−(1/( (√2)))}−{−1}] =−[(−(1/(2(√2)))ln2−(1/( (√2)))}+1] =(1/(2(√2)))ln2+(1/( (√2)))−1 pls check](https://www.tinkutara.com/question/Q35077.png)
Commented by math khazana by abdo last updated on 15/May/18
