Menu Close

calculate-0-pi-4-sinx-ln-cosx-dx-




Question Number 35060 by math khazana by abdo last updated on 14/May/18
calculate ∫_0 ^(π/4)  sinx ln(cosx)dx
calculate0π4sinxln(cosx)dx
Commented by math khazana by abdo last updated on 15/May/18
let put I = ∫_0 ^(π/4)  sinx ln(cosx)dx  changement  cosx =t give  I = ∫_1 ^((√2)/2)  (√(1−t^2 ))  ln(t) −(dt/( (√(1−t^2 ))))  = ∫_((√2)/2) ^1   ln(t)dt = [ t ln(t) −t_ ]_((√2)/2) ^1    = −1 −((√2)/2)ln(((√2)/2)) +((√2)/2)  =((√2)/2) −1  −((√2)/2){ (1/2)ln(2) −ln(2)}  =((√2)/2) −1  +(1/4)(√2) ln(2) .
letputI=0π4sinxln(cosx)dxchangementcosx=tgiveI=1221t2ln(t)dt1t2=221ln(t)dt=[tln(t)t]221=122ln(22)+22=22122{12ln(2)ln(2)}=221+142ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18
t=cosx  dt=−sinxdx  ∫_1 ^(1/( (√2))) −lnt dt  I′=∫lnt dt  =lnt×t−t  so I=−∣tlnt−t∣_1 ^(1/( (√2)))   =−[{(1/( (√2)))ln((1/( (√2))))−(1/( (√2)))}−{1.ln1−1}]  =−[(1/( (√2)))(−(1/2)ln2)−(1/( (√2)))}−{−1}]  =−[(−(1/(2(√2)))ln2−(1/( (√2)))}+1]  =(1/(2(√2)))ln2+(1/( (√2)))−1  pls check
t=cosxdt=sinxdx112lntdtI=lntdt=lnt×ttsoI=tlntt112=[{12ln(12)12}{1.ln11}]=[12(12ln2)12}{1}]=[(122ln212}+1]=122ln2+121plscheck
Commented by math khazana by abdo last updated on 15/May/18
your answer is correct sir Tanmay...thanks...
youransweriscorrectsirTanmaythanks

Leave a Reply

Your email address will not be published. Required fields are marked *