Menu Close

calculate-0-pi-4-x-artan-2x-1-dx-




Question Number 35685 by prof Abdo imad last updated on 22/May/18
calculate  ∫_0 ^(π/4)    x artan(2x+1)dx
calculate0π4xartan(2x+1)dx
Commented by prof Abdo imad last updated on 23/May/18
let put I  = ∫_0 ^(π/4)  x arctan(2x+1)dx by parts  I = [ (x^2 /2)arctan(2x+1)]_0 ^(π/4)  − ∫_0 ^(π/4)  (x^2 /2) (2/(1 +(2x+1)^2 ))dx  =(π^2 /(32))arctan((π/2)+1) −∫_0 ^(π/4)      (x^2 /(1+(2x+1)^2 ))dx let   calculate J= ∫_0 ^(π/4)    (x^2 /(1+(2x+1)^2 ))dx  J =_(2x+1=u)    ∫_1 ^((π/2)+1)    (((((u−1)/2))^2 )/(1+u^2 )) (du/2)  = (1/8) ∫_1 ^((π/2)+1)      ((u^2  −2u +1)/(1+u^2 ))du  8J = ∫_1 ^((π/2)+1)    (1  −((2u)/(1+u^2 )))du  = (π/2) −[ ln(1+u^2 )]_1 ^((π/2)+1)   =(π/2) −{ ln(1+((π/2)+1)^2 ) −ln(2)} ⇒  J = (π/(16)) −(1/8){ln(1+((π/2)+1)^2 ) −ln(2)} so  I = (π^2 /(32)) arctan((π/2)+1) −(π/(16)) +(1/8){ln(1+((π/2)+1)^2 )−ln(2)}
letputI=0π4xarctan(2x+1)dxbypartsI=[x22arctan(2x+1)]0π40π4x2221+(2x+1)2dx=π232arctan(π2+1)0π4x21+(2x+1)2dxletcalculateJ=0π4x21+(2x+1)2dxJ=2x+1=u1π2+1(u12)21+u2du2=181π2+1u22u+11+u2du8J=1π2+1(12u1+u2)du=π2[ln(1+u2)]1π2+1=π2{ln(1+(π2+1)2)ln(2)}J=π1618{ln(1+(π2+1)2)ln(2)}soI=π232arctan(π2+1)π16+18{ln(1+(π2+1)2)ln(2)}
Answered by ajfour last updated on 23/May/18
I=(x^2 /2)tan^(−1) (2x+1)∣_0 ^(π/4) −∫_0 ^(  π/4)  ((x^2 /2))[(2/(1+(2x+1)^2 ))]dx   =(π^2 /(32))tan^(−1) (1+(π/2))−I_1   I_1 =(1/4)∫_0 ^(  π/4) ((1+(2x+1)^2 −2(2x+1))/(1+(2x+1)^2 ))dx      =(x/4)∣_0 ^(π/4) −(1/4)∫_( 2) ^(  1+(1+(π/2))^2 )  (dt/t)     =(π/(16))−(1/4)ln [(1/2)+(((π+2)^2 )/8)]        I = (π^2 /(32))tan^(−1) (1+(π/2))−(π/(16))                         +(1/4)ln [(1/2)+(((π+2)^2 )/8)] .
I=x22tan1(2x+1)0π/40π/4(x22)[21+(2x+1)2]dx=π232tan1(1+π2)I1I1=140π/41+(2x+1)22(2x+1)1+(2x+1)2dx=x40π/41421+(1+π2)2dtt=π1614ln[12+(π+2)28]I=π232tan1(1+π2)π16+14ln[12+(π+2)28].

Leave a Reply

Your email address will not be published. Required fields are marked *