calculate-0-pi-4-x-artan-2x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35685 by prof Abdo imad last updated on 22/May/18 calculate∫0π4xartan(2x+1)dx Commented by prof Abdo imad last updated on 23/May/18 letputI=∫0π4xarctan(2x+1)dxbypartsI=[x22arctan(2x+1)]0π4−∫0π4x2221+(2x+1)2dx=π232arctan(π2+1)−∫0π4x21+(2x+1)2dxletcalculateJ=∫0π4x21+(2x+1)2dxJ=2x+1=u∫1π2+1(u−12)21+u2du2=18∫1π2+1u2−2u+11+u2du8J=∫1π2+1(1−2u1+u2)du=π2−[ln(1+u2)]1π2+1=π2−{ln(1+(π2+1)2)−ln(2)}⇒J=π16−18{ln(1+(π2+1)2)−ln(2)}soI=π232arctan(π2+1)−π16+18{ln(1+(π2+1)2)−ln(2)} Answered by ajfour last updated on 23/May/18 I=x22tan−1(2x+1)∣0π/4−∫0π/4(x22)[21+(2x+1)2]dx=π232tan−1(1+π2)−I1I1=14∫0π/41+(2x+1)2−2(2x+1)1+(2x+1)2dx=x4∣0π/4−14∫21+(1+π2)2dtt=π16−14ln[12+(π+2)28]I=π232tan−1(1+π2)−π16+14ln[12+(π+2)28]. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-I-0-1-e-2t-ln-1-e-t-dt-Next Next post: Question-166759 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.