Question Number 35685 by prof Abdo imad last updated on 22/May/18
$${calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:{x}\:{artan}\left(\mathrm{2}{x}+\mathrm{1}\right){dx} \\ $$
Commented by prof Abdo imad last updated on 23/May/18
$${let}\:{put}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{x}\:{arctan}\left(\mathrm{2}{x}+\mathrm{1}\right){dx}\:{by}\:{parts} \\ $$$${I}\:=\:\left[\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{arctan}\left(\mathrm{2}{x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:−\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\frac{\mathrm{2}}{\mathrm{1}\:+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{32}}{arctan}\left(\frac{\pi}{\mathrm{2}}+\mathrm{1}\right)\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{let}\: \\ $$$${calculate}\:{J}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${J}\:=_{\mathrm{2}{x}+\mathrm{1}={u}} \:\:\:\int_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{1}} \:\:\:\frac{\left(\frac{{u}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\mathrm{2}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{8}}\:\int_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{1}} \:\:\:\:\:\frac{{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$\mathrm{8}{J}\:=\:\int_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{1}} \:\:\:\left(\mathrm{1}\:\:−\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right){du} \\ $$$$=\:\frac{\pi}{\mathrm{2}}\:−\left[\:{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\right]_{\mathrm{1}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{1}} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\left\{\:{ln}\left(\mathrm{1}+\left(\frac{\pi}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \right)\:−{ln}\left(\mathrm{2}\right)\right\}\:\Rightarrow \\ $$$${J}\:=\:\frac{\pi}{\mathrm{16}}\:−\frac{\mathrm{1}}{\mathrm{8}}\left\{{ln}\left(\mathrm{1}+\left(\frac{\pi}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \right)\:−{ln}\left(\mathrm{2}\right)\right\}\:{so} \\ $$$${I}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{32}}\:{arctan}\left(\frac{\pi}{\mathrm{2}}+\mathrm{1}\right)\:−\frac{\pi}{\mathrm{16}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left\{{ln}\left(\mathrm{1}+\left(\frac{\pi}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \right)−{ln}\left(\mathrm{2}\right)\right\} \\ $$
Answered by ajfour last updated on 23/May/18
$${I}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}+\mathrm{1}\right)\mid_{\mathrm{0}} ^{\pi/\mathrm{4}} −\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{4}} \:\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\left[\frac{\mathrm{2}}{\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }\right]{dx} \\ $$$$\:=\frac{\pi^{\mathrm{2}} }{\mathrm{32}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−{I}_{\mathrm{1}} \\ $$$${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{4}} \frac{\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:=\frac{{x}}{\mathrm{4}}\mid_{\mathrm{0}} ^{\pi/\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{4}}\int_{\:\mathrm{2}} ^{\:\:\mathrm{1}+\left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} } \:\frac{{dt}}{{t}} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\left(\pi+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{8}}\right] \\ $$$$\:\:\:\:\:\:{I}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{32}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}+\frac{\pi}{\mathrm{2}}\right)−\frac{\pi}{\mathrm{16}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\left(\pi+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{8}}\right]\:. \\ $$