Menu Close

calculate-0-pi-4-x-k-1-cos-x-2-k-dx-




Question Number 62343 by maxmathsup by imad last updated on 20/Jun/19
calculate ∫_0 ^(π/4) {xΠ_(k=1) ^∞  cos((x/2^k ))}dx
calculate0π4{xk=1cos(x2k)}dx
Commented by maxmathsup by imad last updated on 20/Jun/19
let A_n =Π_(k=1) ^n  cos((x/2^k )) and B_n =Π_(k=1) ^n  sin((x/2^k )) ⇒  A_n .B_n =Π_(k=1) ^n  cos((x/2^k ))sin((x/2^k )) =(1/2^n ) Π_(k=1) ^n  sin((x/2^(k−1) )) =(1/2^n ) Π_(k=0) ^(n−1)  sin((x/2^k ))  =(1/2^n ) sin(x) Π_(k=1) ^n  sin((x/2^k )) .(1/(sin((x/2^n )))) ⇒A_n  .B_n = B_n .((sinx)/(2^n sin((x/2^n )))) ⇒  A_n =((sinx)/(2^n sin((x/2^n ))))   we have  2^n  sin((x/2^n ))∼2^n  (x/2^n ) (=x) ⇒lim_(n→+∞) A_n = ((sinx)/x) ⇒  ∫_0 ^(π/4) {x Π_(k=1) ^∞  cos((x/2^k ))}dx =∫_0 ^(π/4)  {x ((sinx)/x)}dx =∫_0 ^(π/4)  sinx dx =[−cosx]_0 ^(π/4)   =1−((√2)/2) .
letAn=k=1ncos(x2k)andBn=k=1nsin(x2k)An.Bn=k=1ncos(x2k)sin(x2k)=12nk=1nsin(x2k1)=12nk=0n1sin(x2k)=12nsin(x)k=1nsin(x2k).1sin(x2n)An.Bn=Bn.sinx2nsin(x2n)An=sinx2nsin(x2n)wehave2nsin(x2n)2nx2n(=x)limn+An=sinxx0π4{xk=1cos(x2k)}dx=0π4{xsinxx}dx=0π4sinxdx=[cosx]0π4=122.
Answered by mr W last updated on 20/Jun/19
P_n (x)=Π_(k=1) ^n cos ((x/2^k ))  2 sin ((x/2^n ))P_n (x)=cos ((x/2))cos ((x/2^2 ))...cos ((x/2^(n−1) ))sin ((x/2^(n−1) ))  ......  2^n  sin ((x/2^n ))P_n (x)=sin  (x)  ⇒P_n (x)=((sin (x))/(2^n sin ((x/2^n ))))=((sin (x))/x)×((x/2^n )/(sin ((x/2^n ))))  ⇒lim_(n→∞) P_n (x)=((sin (x))/x)×lim_(n→∞) ((x/2^n )/(sin ((x/2^n ))))=((sin (x))/x)  ∫_0 ^(π/4) {xΠ_(k=1) ^∞  cos((x/2^k ))}dx  =∫_0 ^(π/4) sin x dx  =[−cos x]_0 ^(π/4)   =1−((√2)/2)
Pn(x)=nk=1cos(x2k)2sin(x2n)Pn(x)=cos(x2)cos(x22)cos(x2n1)sin(x2n1)2nsin(x2n)Pn(x)=sin(x)Pn(x)=sin(x)2nsin(x2n)=sin(x)x×x2nsin(x2n)limnPn(x)=sin(x)x×limnx2nsin(x2n)=sin(x)x0π4{xk=1cos(x2k)}dx=0π4sinxdx=[cosx]0π4=122
Commented by maxmathsup by imad last updated on 20/Jun/19
thanks sir mrw.
thankssirmrw.

Leave a Reply

Your email address will not be published. Required fields are marked *