Question Number 62343 by maxmathsup by imad last updated on 20/Jun/19
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{{x}\prod_{{k}=\mathrm{1}} ^{\infty} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right\}{dx} \\ $$
Commented by maxmathsup by imad last updated on 20/Jun/19
$${let}\:{A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:{and}\:{B}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:\Rightarrow \\ $$$${A}_{{n}} .{B}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right){sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:{sin}\left({x}\right)\:\prod_{{k}=\mathrm{1}} ^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:.\frac{\mathrm{1}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\:\Rightarrow{A}_{{n}} \:.{B}_{{n}} =\:{B}_{{n}} .\frac{{sinx}}{\mathrm{2}^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\:\Rightarrow \\ $$$${A}_{{n}} =\frac{{sinx}}{\mathrm{2}^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\:\:\:{we}\:{have}\:\:\mathrm{2}^{{n}} \:{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\sim\mathrm{2}^{{n}} \:\frac{{x}}{\mathrm{2}^{{n}} }\:\left(={x}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {A}_{{n}} =\:\frac{{sinx}}{{x}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{{x}\:\prod_{{k}=\mathrm{1}} ^{\infty} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right\}{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left\{{x}\:\frac{{sinx}}{{x}}\right\}{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sinx}\:{dx}\:=\left[−{cosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:. \\ $$
Answered by mr W last updated on 20/Jun/19
$${P}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}^{{k}} }\right) \\ $$$$\mathrm{2}\:\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}} }\right){P}_{{n}} \left({x}\right)=\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}^{\mathrm{2}} }\right)…\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }\right)\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }\right) \\ $$$$…… \\ $$$$\mathrm{2}^{{n}} \:\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}} }\right){P}_{{n}} \left({x}\right)=\mathrm{sin}\:\:\left({x}\right) \\ $$$$\Rightarrow{P}_{{n}} \left({x}\right)=\frac{\mathrm{sin}\:\left({x}\right)}{\mathrm{2}^{{n}} \mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}=\frac{\mathrm{sin}\:\left({x}\right)}{{x}}×\frac{\frac{{x}}{\mathrm{2}^{{n}} }}{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{P}_{{n}} \left({x}\right)=\frac{\mathrm{sin}\:\left({x}\right)}{{x}}×\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\frac{{x}}{\mathrm{2}^{{n}} }}{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}=\frac{\mathrm{sin}\:\left({x}\right)}{{x}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left\{{x}\prod_{{k}=\mathrm{1}} ^{\infty} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sin}\:{x}\:{dx} \\ $$$$=\left[−\mathrm{cos}\:{x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by maxmathsup by imad last updated on 20/Jun/19
$${thanks}\:{sir}\:{mrw}. \\ $$