calculate-0-pi-4-x-k-1-cos-x-2-k-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62343 by maxmathsup by imad last updated on 20/Jun/19 calculate∫0π4{x∏k=1∞cos(x2k)}dx Commented by maxmathsup by imad last updated on 20/Jun/19 letAn=∏k=1ncos(x2k)andBn=∏k=1nsin(x2k)⇒An.Bn=∏k=1ncos(x2k)sin(x2k)=12n∏k=1nsin(x2k−1)=12n∏k=0n−1sin(x2k)=12nsin(x)∏k=1nsin(x2k).1sin(x2n)⇒An.Bn=Bn.sinx2nsin(x2n)⇒An=sinx2nsin(x2n)wehave2nsin(x2n)∼2nx2n(=x)⇒limn→+∞An=sinxx⇒∫0π4{x∏k=1∞cos(x2k)}dx=∫0π4{xsinxx}dx=∫0π4sinxdx=[−cosx]0π4=1−22. Answered by mr W last updated on 20/Jun/19 Pn(x)=∏nk=1cos(x2k)2sin(x2n)Pn(x)=cos(x2)cos(x22)…cos(x2n−1)sin(x2n−1)……2nsin(x2n)Pn(x)=sin(x)⇒Pn(x)=sin(x)2nsin(x2n)=sin(x)x×x2nsin(x2n)⇒limn→∞Pn(x)=sin(x)x×limn→∞x2nsin(x2n)=sin(x)x∫0π4{x∏k=1∞cos(x2k)}dx=∫0π4sinxdx=[−cosx]0π4=1−22 Commented by maxmathsup by imad last updated on 20/Jun/19 thankssirmrw. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-127879Next Next post: Question-62347 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.