Menu Close

calculate-0-pi-cos-8-x-sin-8-x-dx-




Question Number 79763 by mathmax by abdo last updated on 28/Jan/20
calculate ∫_0 ^π {cos^8 x +sin^8 x}dx
calculate0π{cos8x+sin8x}dx
Commented by john santu last updated on 28/Jan/20
cos^8 x+sin^8 x=(sin^4 x)^2 +(cos^4 x)^2   = (sin^4 x+cos^4 x)^2 −2sin^4 xcos^4 x  = {(sin^2 x+cos^2 x)^2 −2sin^2 xcos^2 x}^2 −(1/2)sin^2 (2x)  = {1−(1/2)sin^2 (2x)}^2 −(1/2)sin^2 (2x)  =1−(3/2)sin^2 (2x)+(1/4)sin^4 (2x)  =1−(3/2)((1/2)−(1/2)cos (4x))+(1/4){(1/2)−(1/2)cos (4x)}^2   =(1/4)+(3/4)cos (4x)+(1/4){(1/4)−(1/2)cos (4x)+(1/4)cos^2 (4x)}  = (5/(16))+(5/8)cos (4x)+(1/(16))((1/2)+(1/2)cos (8x))  = ((11)/(32))+(5/8)cos (4x)+(1/(32))cos (8x)
cos8x+sin8x=(sin4x)2+(cos4x)2=(sin4x+cos4x)22sin4xcos4x={(sin2x+cos2x)22sin2xcos2x}212sin2(2x)={112sin2(2x)}212sin2(2x)=132sin2(2x)+14sin4(2x)=132(1212cos(4x))+14{1212cos(4x)}2=14+34cos(4x)+14{1412cos(4x)+14cos2(4x)}=516+58cos(4x)+116(12+12cos(8x))=1132+58cos(4x)+132cos(8x)
Commented by john santu last updated on 28/Jan/20
∫_0 ^π  (((11)/(32))+(5/8)cos (4x)+(1/(32))cos (8x))dx=  ((11x)/(32))+(5/(32))sin (4x)+(1/(256))sin (8x)∣_0 ^π   = ((11π)/(32)) ★
π0(1132+58cos(4x)+132cos(8x))dx=11x32+532sin(4x)+1256sin(8x)π0=11π32
Answered by Henri Boucatchou last updated on 28/Jan/20
we  have  cos^8 x+sin^8 x=1−(8/8)sin^2 2x  =cos^2 2x=(1/4)(e^(i2x) +e^(−i2x) )^2   =(1/4)[(e^(i4x) +e^(−i4x) )+2]=(1/4)(2cos4x+2)  ⇒ ∫_0 ^( π) (cos^8 x+sin^8 x)dx=(1/2)[(1/4)sin4x+2x]_0 ^π   =(1/2)(2π)  =π
wehavecos8x+sin8x=188sin22x=cos22x=14(ei2x+ei2x)2=14[(ei4x+ei4x)+2]=14(2cos4x+2)0π(cos8x+sin8x)dx=12[14sin4x+2x]0π=12(2π)=π
Commented by john santu last updated on 28/Jan/20
how to get sin^8 x+cos^8 x=1−(8/8)sin^2 2x?  it impossible
howtogetsin8x+cos8x=188sin22x?itimpossible
Commented by john santu last updated on 28/Jan/20
a^4 +b^4 =(a+b)^4 −2ab(2a^2 −3ab−2b^2 )  put a=cos^2 x, b = sin^2 x  cos^8 x+sin^8 x=1−(1/2).4sin^2 xcos^2 x(2(cos^2 x−sin^2 x)−(3/4).4sin^2 xcos^2 x)  = 1−(1/2)sin^2 (2x)(2cos (2x)−(3/4)sin^2 (2x))  = 1−(1/4)sin (4x)sin (2x)+(3/8)sin^4 (2x)
a4+b4=(a+b)42ab(2a23ab2b2)puta=cos2x,b=sin2xcos8x+sin8x=112.4sin2xcos2x(2(cos2xsin2x)34.4sin2xcos2x)=112sin2(2x)(2cos(2x)34sin2(2x))=114sin(4x)sin(2x)+38sin4(2x)

Leave a Reply

Your email address will not be published. Required fields are marked *