Menu Close

calculate-0-pi-dx-1-2cosx-




Question Number 31070 by abdo imad last updated on 02/Mar/18
calculate ∫_0 ^π      (dx/(1+2cosx)) .
calculate0πdx1+2cosx.
Commented by abdo imad last updated on 03/Mar/18
the ch.tan((x/2))=t give  I= ∫_0 ^(+∞)    (1/(1+2((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^(+∞)   ((2dt)/(1+t^2  +2(1−t^2 )))  = ∫_0 ^(+∞)   ((2dt)/(3−t^2 )) =(1/(2(√3)))∫_0 ^(+∞) 2( (1/( (√3) −t)) +(1/( (√3) +t)))dt  =(1/( (√3)))[ln((√3) +t)−ln((√3) −t)]_0 ^(+∞) =(1/( (√3)))[ln(∣(((√3) +t)/( (√3) −t)))∣]_0 ^(+∞) ⇒  I=0
thech.tan(x2)=tgiveI=0+11+21t21+t22dt1+t2=0+2dt1+t2+2(1t2)=0+2dt3t2=1230+2(13t+13+t)dt=13[ln(3+t)ln(3t)]0+=13[ln(3+t3t)]0+I=0

Leave a Reply

Your email address will not be published. Required fields are marked *