Menu Close

calculate-0-pi-dx-3-cosx-2-sinx-




Question Number 63711 by mathmax by abdo last updated on 07/Jul/19
calculate ∫_0 ^π    (dx/( (√3)cosx +(√2)sinx))
calculate0πdx3cosx+2sinx
Commented by mathmax by abdo last updated on 08/Jul/19
let A =∫_0 ^π   (dx/( (√3)cosx +(√2)sinx))  changement tan((x/2))=t give  A =∫_0 ^∞    ((2dt)/((1+t^2 ){(√3)((1−t^2 )/(1+t^2 )) +(√2)((2t)/(1+t^2 ))}))  =∫_0 ^∞   ((2dt)/( (√3)(1−t^2 )+2(√2)t)) =∫_0 ^∞   ((2dt)/(−(√3)t^2 +2(√2)t +(√3))) =∫_0 ^∞   ((−2dt)/( (√3)t^2 −2(√2)t−(√3)))  Δ^′ =(−(√2))^2 +3 =5 ⇒t_1 =(((√2)+(√5))/( (√3))) and t_2 =(((√2)−(√5))/( (√3))) ⇒  A =((−2)/( (√3)))∫_0 ^∞      (dt/((t−t_1 )(t−t_2 ))) =((−2)/( (√3)(t_1 −t_2 ))) ∫_0 ^∞  {(1/(t−t_1 )) −(1/(t−t_2 ))}dt  =((−2)/( (√3)((2(√5))/( (√3))))) ∫_0 ^∞  {(1/(t−t_1 )) −(1/(t−t_2 ))}dt=−(1/( (√5)))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞)   =(1/( (√5)))ln∣(t_1 /t_2 )∣ =(1/( (√5)))ln∣(((√2)+(√5))/( (√2)−(√5)))∣ =(1/( (√5)))ln((((√5)+(√2))/( (√5)−(√2)))).
letA=0πdx3cosx+2sinxchangementtan(x2)=tgiveA=02dt(1+t2){31t21+t2+22t1+t2}=02dt3(1t2)+22t=02dt3t2+22t+3=02dt3t222t3Δ=(2)2+3=5t1=2+53andt2=253A=230dt(tt1)(tt2)=23(t1t2)0{1tt11tt2}dt=232530{1tt11tt2}dt=15[lntt1tt2]0+=15lnt1t2=15ln2+525=15ln(5+252).
Answered by MJS last updated on 07/Jul/19
=((√5)/5)∫(dx/(sin (x+arctan ((√6)/2))))  now it′s easy again...
=55dxsin(x+arctan62)nowitseasyagain
Commented by mathmax by abdo last updated on 07/Jul/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *