Menu Close

calculate-0-pi-dx-cosx-2sinx-2-




Question Number 85801 by mathmax by abdo last updated on 24/Mar/20
calculate ∫_0 ^π   (dx/((cosx +2sinx)^2 ))
calculate0πdx(cosx+2sinx)2
Commented by john santu last updated on 25/Mar/20
(cos x+2sin x)^2  = 5 cos^2 (x−tan^(−1) (2))  ∫ (dx/(5 cos^2 (x−tan^(−1) (2)))) =  (1/5) tan (x−tan^(−1) (2)) =   (1/5)(((tan x−2)/(1+2tan x))) +c  so ⇒ ∫_0 ^π  (dx/((cos x+2sin x)^2 )) =   (1/5) [ ((tan x−2)/(1+2tan x)) ]_( 0) ^(  π)  =   (1/5) [ −2 −(−2) ] = 0
(cosx+2sinx)2=5cos2(xtan1(2))dx5cos2(xtan1(2))=15tan(xtan1(2))=15(tanx21+2tanx)+csoπ0dx(cosx+2sinx)2=Missing \left or extra \right15[2(2)]=0
Commented by mathmax by abdo last updated on 26/Mar/20
et A =∫_0 ^π   (dx/((cosx+2sinx)^2 ))  changement tan((x/2))=t give  A =∫_0 ^∞     ((2dt)/((1+t^2 ){((1−t^2 )/(1+t^2 ))+((4t)/(1+t^2 ))}^2 )) =∫_0 ^∞    ((2(1+t^2 ))/((−t^2 +4t+1)^2 ))dt  =2∫_0 ^∞    ((t^2 +1)/((t^2 −4t−1)^2 ))dt  let decompose F(t)=((t^2  +1)/((t^2 −4t−1)^2 ))  t^2 −4t−1 =0→Δ^′ =4+1 =5 ⇒t_1 =2+(√5) and t_2 =2−(√5)  F(t) =((t^2  +1)/((t−t_1 )^2 (t−t_2 )^2 )) =(a/(t−t_1 )) +(b/((t−t_1 )^2 )) +(c/(t−t_2 )) +(d/((t−t_2 )^2 ))  b =((t_1 ^2 +1)/((t_1 −t_2 )^2 )) =((4+4(√5)+5+1)/((2(√5))^2 )) =((10+4(√5))/(20)) =((5+2(√5))/(10))  d =((t_2 ^2  +1)/((t_2 −t_1 )^2 )) =((4−4(√5)+5+1)/(20)) =((10−4(√5))/(20)) =((5−2(√5))/(10))  lim_(t→+∞) tF(t) =0 =a+c ⇒c=−a  F(0)=(1/((t_1 t_2 )^2 )) =1 =−(a/t_1 ) +(b/t_1 ^2 ) +(a/t_2 ) +(d/t_2 ^2 ) ⇒  ((1/t_2 )−(1/t_1 ))a =1−(b/t_1 ^2 )−(d/t_2 ^2 ) ⇒(((2(√5))/(−1)))a =1−(b/(4+4(√5)+5))−(d/(4−4(√5)+5))  =1−(b/(9+4(√5)))−(d/(9−4(√5))) ⇒a =−(1/(2(√5))){1−(b/(9+4(√5)))−(d/(9−4(√5)))} ⇒  A =2a∫_0 ^∞ (dt/(t−t_1 )) +2b∫_0 ^∞  (dt/((t−t_1 )^2 )) +2c ∫_0 ^∞ (dt/(t−t_2 )) +2d∫_0 ^∞  (dt/((t−t_2 )^2 ))  =[2aln∣t−t_1 ∣+2cln∣t−t_2 ∣]_0 ^(+∞)  +[((−2b)/(t−t_1 ))−((2d)/(t−t_2 ))]_0 ^(+∞)   rest to finish the calculus....
etA=0πdx(cosx+2sinx)2changementtan(x2)=tgiveA=02dt(1+t2){1t21+t2+4t1+t2}2=02(1+t2)(t2+4t+1)2dt=20t2+1(t24t1)2dtletdecomposeF(t)=t2+1(t24t1)2t24t1=0Δ=4+1=5t1=2+5andt2=25F(t)=t2+1(tt1)2(tt2)2=att1+b(tt1)2+ctt2+d(tt2)2b=t12+1(t1t2)2=4+45+5+1(25)2=10+4520=5+2510d=t22+1(t2t1)2=445+5+120=104520=52510limt+tF(t)=0=a+cc=aF(0)=1(t1t2)2=1=at1+bt12+at2+dt22(1t21t1)a=1bt12dt22(251)a=1b4+45+5d445+5=1b9+45d945a=125{1b9+45d945}A=2a0dttt1+2b0dt(tt1)2+2c0dttt2+2d0dt(tt2)2=[2alntt1+2clntt2]0++[2btt12dtt2]0+resttofinishthecalculus.
Commented by mathmax by abdo last updated on 26/Mar/20
let try another way we have  A =2 ∫_0 ^∞  ((t^2  +1)/((t−t_1 )^2 (t−t_2 )^2 ))  with t_1 =2+(√5) and t_2 =2−(√5)  A =2∫_0 ^∞    ((t^2  +1)/((((t−t_1 )/(t−t_2 )))^2 (t−t_2 )^4 ))dt  we do the changement ((t−t_1 )/(t−t_2 )) =u⇒  t−t_1 =ut−ut_2  ⇒(1−u)t =t_1 −ut_2  ⇒t =((t_1 −ut_2 )/(1−u)) ⇒  dt =((−t_2 (1−u)+(t_1 −ut_2 ))/((1−u)^2 )) =((−t_2 +t_2 u+t_1 −ut_2 )/((1−u)^2 )) =((2(√5))/((1−u)^2 ))  t−t_2 =((t_1 −ut_2 )/(1−u))−t_2 =((t_1 −ut_2 −t_2 +ut_2 )/(1−u)) =((2(√5))/(1−u)) ⇒  A =2 ∫_(t_1 /t_2 ) ^1     (((((t_1 −ut_2 )/(1−u)))^2  +1)/(u^2 ×(((2(√5))^4 )/((1−u)^4 ))))×((2(√5))/((1−u)^2 ))du  A =(2/((2(√5))^3 )) ∫_(t_1 /t_2 ) ^1   (((t_1 −ut_2 )^2  +(1−u)^2 )/u^2 ) du  A =(1/(20(√5))) ∫_(t_1 /t_2 ) ^1   ((t_2 ^2 u^2 +2u +t_1 ^2   +u^2 −2u +1)/u^2 )du   (t_1 t_2 =−1)  20(√5) A =∫_(t_1 /t_2 ) ^1   (((1+t_2 ^2 )u^2  +t_1 ^2 )/u^2 )du  =(1+t_2 ^2 )(1−(t_1 /t_2 )) −t_1 ^2 [(1/u)]_(t_1 /t_2 ) ^1   =(1+t_2 ^2 )((t_2 −t_1 )/t_2 ) −t_1 ^2 (1−(t_2 /t_1 )) ⇒  A=(1/(20(√5))){(1+(2−(√5))^2 )(((−2(√5))/(2−(√5))))−(2+(√5))^2 (((2(√5))/(2+(√5))))}
lettryanotherwaywehaveA=20t2+1(tt1)2(tt2)2witht1=2+5andt2=25A=20t2+1(tt1tt2)2(tt2)4dtwedothechangementtt1tt2=utt1=utut2(1u)t=t1ut2t=t1ut21udt=t2(1u)+(t1ut2)(1u)2=t2+t2u+t1ut2(1u)2=25(1u)2tt2=t1ut21ut2=t1ut2t2+ut21u=251uA=2t1t21(t1ut21u)2+1u2×(25)4(1u)4×25(1u)2duA=2(25)3t1t21(t1ut2)2+(1u)2u2duA=1205t1t21t22u2+2u+t12+u22u+1u2du(t1t2=1)205A=t1t21(1+t22)u2+t12u2du=(1+t22)(1t1t2)t12[1u]t1t21=(1+t22)t2t1t2t12(1t2t1)A=1205{(1+(25)2)(2525)(2+5)2(252+5)}

Leave a Reply

Your email address will not be published. Required fields are marked *