calculate-0-pi-dx-cosx-2sinx-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 85801 by mathmax by abdo last updated on 24/Mar/20 calculate∫0πdx(cosx+2sinx)2 Commented by john santu last updated on 25/Mar/20 (cosx+2sinx)2=5cos2(x−tan−1(2))∫dx5cos2(x−tan−1(2))=15tan(x−tan−1(2))=15(tanx−21+2tanx)+cso⇒∫π0dx(cosx+2sinx)2=Missing \left or extra \rightMissing \left or extra \right15[−2−(−2)]=0 Commented by mathmax by abdo last updated on 26/Mar/20 etA=∫0πdx(cosx+2sinx)2changementtan(x2)=tgiveA=∫0∞2dt(1+t2){1−t21+t2+4t1+t2}2=∫0∞2(1+t2)(−t2+4t+1)2dt=2∫0∞t2+1(t2−4t−1)2dtletdecomposeF(t)=t2+1(t2−4t−1)2t2−4t−1=0→Δ′=4+1=5⇒t1=2+5andt2=2−5F(t)=t2+1(t−t1)2(t−t2)2=at−t1+b(t−t1)2+ct−t2+d(t−t2)2b=t12+1(t1−t2)2=4+45+5+1(25)2=10+4520=5+2510d=t22+1(t2−t1)2=4−45+5+120=10−4520=5−2510limt→+∞tF(t)=0=a+c⇒c=−aF(0)=1(t1t2)2=1=−at1+bt12+at2+dt22⇒(1t2−1t1)a=1−bt12−dt22⇒(25−1)a=1−b4+45+5−d4−45+5=1−b9+45−d9−45⇒a=−125{1−b9+45−d9−45}⇒A=2a∫0∞dtt−t1+2b∫0∞dt(t−t1)2+2c∫0∞dtt−t2+2d∫0∞dt(t−t2)2=[2aln∣t−t1∣+2cln∣t−t2∣]0+∞+[−2bt−t1−2dt−t2]0+∞resttofinishthecalculus…. Commented by mathmax by abdo last updated on 26/Mar/20 lettryanotherwaywehaveA=2∫0∞t2+1(t−t1)2(t−t2)2witht1=2+5andt2=2−5A=2∫0∞t2+1(t−t1t−t2)2(t−t2)4dtwedothechangementt−t1t−t2=u⇒t−t1=ut−ut2⇒(1−u)t=t1−ut2⇒t=t1−ut21−u⇒dt=−t2(1−u)+(t1−ut2)(1−u)2=−t2+t2u+t1−ut2(1−u)2=25(1−u)2t−t2=t1−ut21−u−t2=t1−ut2−t2+ut21−u=251−u⇒A=2∫t1t21(t1−ut21−u)2+1u2×(25)4(1−u)4×25(1−u)2duA=2(25)3∫t1t21(t1−ut2)2+(1−u)2u2duA=1205∫t1t21t22u2+2u+t12+u2−2u+1u2du(t1t2=−1)205A=∫t1t21(1+t22)u2+t12u2du=(1+t22)(1−t1t2)−t12[1u]t1t21=(1+t22)t2−t1t2−t12(1−t2t1)⇒A=1205{(1+(2−5)2)(−252−5)−(2+5)2(252+5)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-number-of-real-roots-of-the-equation-f-x-x-3-2x-2-2x-1-0-Next Next post: 0-1-x-2-dx-1-x-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.