calculate-0-pi-ln-2-cos-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 95221 by mathmax by abdo last updated on 24/May/20 calculate∫0πln(2+cosθ)dθ Answered by mathmax by abdo last updated on 24/May/20 I=∫0πln(2+cosθ)dθ⇒I=πln(2)+∫0πln(1+12cosθ)letintroducetheparametricfunctionf(a)=∫0πln(1+acosθ)dθwith0<a<1wehavef′(a)=∫0πcosθ1+acosθdθ=1a∫0π1+acosθ−11+acosθdθ=πa−1a∫0πdθ1+acosθwehave∫0πdθ1+acosθ=tan(θ2)=t∫0∞2dt(1+t2)(1+a1−t21+t2)=2∫0∞dt1+t2+a−at2=2∫0∞dt(1−a)t2+1+a=2(1−a)∫0∞dtt2+1+a1−a=t=1+a1−au21−a×1−a1+a∫0∞1u2+1×1+a1−adu=21−a2×π2=π1−a2⇒f′(a)=πa−π1−a2⇒f(a)=πln(a)−πarcsina+cf(1)=−π22+c⇒c=π22+∫0πln(1+cosθ)dθbut∫0πln(1+cosθ)dθ=∫0πln(2cos2(θ2))dθ=πln(2)+2∫0πln(cos(θ2))dθ(θ2=z)=πln(2)+2∫0π2ln(cosz)dz=πln(2)+2(−π2ln(2))=0⇒c=π22⇒f(a)=πlna−πarcsina+π22andI=πln(2)+f(12)=πln(2)−πln(2)−πarcsin(12)+π22=π22−π(π6)=π22−π26=2π26=π23⇒∫0πln(2+cosθ)dθ=π23 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-n-3-n-1-3-Next Next post: Question-29687 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.