Menu Close

calculate-0-pi-ln-2-cos-d-




Question Number 95221 by mathmax by abdo last updated on 24/May/20
calculate ∫_0 ^π ln(2+cosθ)dθ
calculate0πln(2+cosθ)dθ
Answered by mathmax by abdo last updated on 24/May/20
I =∫_0 ^π ln(2+cosθ)dθ ⇒I =πln(2)+∫_0 ^π ln(1+(1/2)cosθ)  let introduce the parametric function f(a) =∫_0 ^π ln(1+acosθ)dθ  with 0<a<1  we have f^′ (a) =∫_0 ^π   ((cosθ)/(1+acosθ))dθ  =(1/a)∫_0 ^π  ((1+acosθ−1)/(1+acosθ))dθ =(π/a)−(1/a) ∫_0 ^π  (dθ/(1+acosθ))  we have  ∫_0 ^π  (dθ/(1+acosθ)) =_(tan((θ/2))=t)    ∫_0 ^∞ ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =2∫_0 ^∞   (dt/(1+t^2 +a−at^2 )) =2∫_0 ^∞   (dt/((1−a)t^2  +1+a))=(2/((1−a)))∫_0 ^∞  (dt/(t^2  +((1+a)/(1−a))))  =_(t =(√((1+a)/(1−a)))u)    (2/(1−a)) ×((1−a)/(1+a))∫_0 ^∞    (1/(u^2  +1))×(√((1+a)/(1−a)))du  =(2/( (√(1−a^2 ))))×(π/2) =(π/( (√(1−a^2 )))) ⇒f^′ (a) =(π/a)−(π/( (√(1−a^2 )))) ⇒  f(a) =πln(a)−π arcsina +c  f(1) =−(π^2 /2) +c ⇒c =(π^2 /2) +∫_0 ^π ln(1+cosθ)dθ  but  ∫_0 ^π  ln(1+cosθ)dθ =∫_0 ^π ln(2cos^2 ((θ/2)))dθ  =πln(2) +2 ∫_0 ^π  ln(cos((θ/2)))dθ  ((θ/2)=z)  =πln(2)+2∫_0 ^(π/2) ln(cosz)dz =πln(2)+2(−(π/2)ln(2)) =0 ⇒c=(π^2 /2)  ⇒f(a) =πlna −πarcsina +(π^2 /2) and  I =πln(2)+f((1/2)) =πln(2)−πln(2)−πarcsin((1/2))+(π^2 /2)  =(π^2 /2)−π((π/6)) =(π^2 /2)−(π^2 /6) =((2π^2 )/6) =(π^2 /3) ⇒  ∫_0 ^π ln(2+cosθ)dθ =(π^2 /3)
I=0πln(2+cosθ)dθI=πln(2)+0πln(1+12cosθ)letintroducetheparametricfunctionf(a)=0πln(1+acosθ)dθwith0<a<1wehavef(a)=0πcosθ1+acosθdθ=1a0π1+acosθ11+acosθdθ=πa1a0πdθ1+acosθwehave0πdθ1+acosθ=tan(θ2)=t02dt(1+t2)(1+a1t21+t2)=20dt1+t2+aat2=20dt(1a)t2+1+a=2(1a)0dtt2+1+a1a=t=1+a1au21a×1a1+a01u2+1×1+a1adu=21a2×π2=π1a2f(a)=πaπ1a2f(a)=πln(a)πarcsina+cf(1)=π22+cc=π22+0πln(1+cosθ)dθbut0πln(1+cosθ)dθ=0πln(2cos2(θ2))dθ=πln(2)+20πln(cos(θ2))dθ(θ2=z)=πln(2)+20π2ln(cosz)dz=πln(2)+2(π2ln(2))=0c=π22f(a)=πlnaπarcsina+π22andI=πln(2)+f(12)=πln(2)πln(2)πarcsin(12)+π22=π22π(π6)=π22π26=2π26=π230πln(2+cosθ)dθ=π23

Leave a Reply

Your email address will not be published. Required fields are marked *