Menu Close

calculate-0-pi-ln-x-2-2xsin-1-d-




Question Number 62145 by maxmathsup by imad last updated on 16/Jun/19
calculate  ∫_0 ^π ln(x^2 −2xsinθ +1)dθ
calculate0πln(x22xsinθ+1)dθ
Commented by maxmathsup by imad last updated on 17/Jun/19
let f(x) =∫_0 ^π ln(x^2 −2xsinθ +1)dθ ⇒f^′ (x) =∫_0 ^π  ((2x−2sinθ)/(x^2 −2xsinθ+1)) dθ ⇒  ((f^′ (x))/2) =∫_0 ^π   ((x−sinθ)/(x^2 −2xsinθ +1))dθ =_(θ=(t/2))     ∫_0 ^(2π)    ((x−sin((t/2)))/(x^2 −2x sin((t/2))+1)) (dt/2)  ⇒ f^′ (x) =_(z =e^((it)/2) )       ∫_(∣z∣=1)      ((x−((z−z^(−1) )/(2i)))/(x^2 −2x((z−z^(−1) )/(2i)))) ((2dz)/(iz))  = ∫_(∣z∣=1)       ((2ix−z+z^(−1) )/(−z{ 2ix^2 −2xz +2xz^(−1) })) (2i)dz  =−∫_(∣z∣=1)    ((−4x−2iz +2iz^(−1) )/(2ix^2 z−2xz^2  +2x))dz  =∫ ((4x+2iz−2iz^(−1) )/(−2xz^2  +2ix^2 z +2x))dz =(1/x)∫_(∣z∣=1)      ((4xz +2iz^2  −2i)/(z(−2xz^2  +2ix^2 z +2x}))dz   (x≠0)  =−(1/x)∫_(∣z∣=1)      ((iz^2  +2xz −i)/(z{z^2 −ixz −1}))dz  let w(z)=((iz^2  +2xz −i)/(z{z^2 −ixz −1}))  poles of w?  z^2 −ixz −1 =0→Δ^′  =(−ix)^2 +1 =1−x^2   case 1   x>1 ⇒ Δ^′  =(i(√(x^2 −1)))^2  ⇒z_1 =ix+i(√(x^2 −1))  z_2 =ix−i(√(x^2 −1)) and w(z)=((iz^2 +2xz−i)/(z(z−z_1 )(z−z_2 )))  ∣z_1 ∣ −1=∣x+(√(x^2 −1))∣ =x+(√(x^2 −1))−1 =x−1 +(√(x^2 −1))>0 (z_1 is out of circle)  ∣z_2 ∣−1 =∣x−(√(x^2 −1))∣−1 =x−1−(√(x^2 −1))  (x−1)^2 −(x^2 −1) =x^2 −2x +1−x^2 +1 =2−2x =2(1−x)<0 ⇒∣z_2 ∣<1  ∫_(∣z∣=1)     w(z)dz =2iπ { Res(w,o) +Res(w,z_2 )}  Res(w,0) =lim_(z→0) zw(z) =((−i)/(z_1 z_2 )) =((−i)/(−1)) =i   Res(w,z_2 ) =lim_(z→z_2 )    (z−z_2 )w(z) =((iz_2 ^2  +2xz_2 −i)/(z_2 (z_2 −z_1 ))) =((iz_2 ^2  +2xz_2 −i)/((ix−i(√(x^2 −1)))^2 +1))  =((i(ix−i(√(x^2 −1)))^2  +2x(ix−(√(x^2 −1))) −i)/(1−(x+(√(x^2 −1)))^2 ))  =((−i(x+(√(x^2 −1)))^2  +2ix^2  −2x(√(x^2 −1))−i)/(1−(x^2  +2x(√(x^2 −1))+x^2 −1))) =.... be continued...    m
letf(x)=0πln(x22xsinθ+1)dθf(x)=0π2x2sinθx22xsinθ+1dθf(x)2=0πxsinθx22xsinθ+1dθ=θ=t202πxsin(t2)x22xsin(t2)+1dt2f(x)=z=eit2z∣=1xzz12ix22xzz12i2dziz=z∣=12ixz+z1z{2ix22xz+2xz1}(2i)dz=z∣=14x2iz+2iz12ix2z2xz2+2xdz=4x+2iz2iz12xz2+2ix2z+2xdz=1xz∣=14xz+2iz22iz(2xz2+2ix2z+2x}dz(x0)=1xz∣=1iz2+2xziz{z2ixz1}dzletw(z)=iz2+2xziz{z2ixz1}polesofw?z2ixz1=0Δ=(ix)2+1=1x2case1x>1Δ=(ix21)2z1=ix+ix21z2=ixix21andw(z)=iz2+2xziz(zz1)(zz2)z11=∣x+x21=x+x211=x1+x21>0(z1isoutofcircle)z21=∣xx211=x1x21(x1)2(x21)=x22x+1x2+1=22x=2(1x)<0⇒∣z2∣<1z∣=1w(z)dz=2iπ{Res(w,o)+Res(w,z2)}Res(w,0)=limz0zw(z)=iz1z2=i1=iRes(w,z2)=limzz2(zz2)w(z)=iz22+2xz2iz2(z2z1)=iz22+2xz2i(ixix21)2+1=i(ixix21)2+2x(ixx21)i1(x+x21)2=i(x+x21)2+2ix22xx21i1(x2+2xx21+x21)=.becontinuedm
Answered by perlman last updated on 16/Jun/19
let A(θ)=∫_0 ^π ln(x^2 −2xcos(θ)+1)dθ  θ∈IR\{2kπ,k∈IZ}  A(θ)=[xln(x^2 −2cos(θ)x+1)]_0 ^π −∫((2x^2 −2xcos(θ))/(x^2 −2cos(θ)x+1))dx  =πln(π^2 −2cos(θ)π+1)−2∫_0 ^π ((x^2 −xcos(θ))/(x^2 −2cos(θ)x+1))dx  ((x^2 −xcos(θ))/(x^2 −2cos(θ)x+1))=1+((xcos(θ)−1)/(x^2 −2cos(θ)x+1))  A(θ)=πln(π^2 −2cos(θ)π+1)−2∫_0 ^π 1+((xcos(θ)−1)/(x^2 −2cos(θ)x+1))dx  the 2 nd integral   =−2π −2∫_0 ^π ((xcos(θ)−1)/(x^2 −2cos(θ)x+1))dx=−2π−∫_0 ^π ((cos(θ)[2x−2cos(θ)]−2+2cos^2 (θ))/(x^2 −2cos(θ)x+1))dx  =−2π−cos(θ)∫_0 ^π ((2x−2cos(θ))/(x^2 −2cos(θ)x+1))dx+2∫((sin^2 (θ))/(x^2 −2cos(θ)x+1))dx  =−2π−cos(θ)[ln[x^2 −2cos(θ)x+1⌉_0 ^π +2sin^2 θ∫_0 ^π (1/((x−cos(θ))^2 +sin^2 (θ)))dx  =2π−cos(θ)ln(π2−2cos(θ)π+1)+2∫_0 ^π (1/(((x/(sin(θ)))−cot (θ))^2 +1))dx if sin≠0  =−2π−cos(θ)ln(π^2 −2cos(θ)π+1)+2sin(θ){tan^(−1) {(x/(sinθ))−cot (θ)}_0 ^π }  =−2π−cos(θ)ln{π^2 −2cos(θ)π+1}+2sin(θ){tan^(−1) {(π/(sin(θ)))−cot (θ)}−tan^(−1) {cot (−θ)}  =−2π−cos(θ)ln{π^2 −2cos(θ)π+1}+2sin(θ){arctan{(π/(sin(θ)))−cot(θ)}−arctan(tg((π/2)+θ))  A(θ)=−2π+(π−cos(θ))ln(π^2 −2cos(θ)x+1)+2sin(θ)arctan(((π−cos(θ))/(sin(θ))))−2sin(θ)arctan(tan((π/2)+θ))  arctan(tg(a))=a if a∈]((−π)/2).(π/2)[  if a∈]−(π/2)+kπ.(π/2)+kπ[  arctantg(a)=a−kπ
letA(θ)=0πln(x22xcos(θ)+1)dθθIR{2kπ,kIZ}A(θ)=[xln(x22cos(θ)x+1)]0π2x22xcos(θ)x22cos(θ)x+1dx=πln(π22cos(θ)π+1)20πx2xcos(θ)x22cos(θ)x+1dxx2xcos(θ)x22cos(θ)x+1=1+xcos(θ)1x22cos(θ)x+1A(θ)=πln(π22cos(θ)π+1)20π1+xcos(θ)1x22cos(θ)x+1dxthe2ndintegral=2π20πxcos(θ)1x22cos(θ)x+1dx=2π0πcos(θ)[2x2cos(θ)]2+2cos2(θ)x22cos(θ)x+1dx=2πcos(θ)0π2x2cos(θ)x22cos(θ)x+1dx+2sin2(θ)x22cos(θ)x+1dx=2πcos(θ)[ln[x22cos(θ)x+10π+2sin2θ0π1(xcos(θ))2+sin2(θ)dx=2πcos(θ)ln(π22cos(θ)π+1)+20π1(xsin(θ)cot(θ))2+1dxifsin0=2πcos(θ)ln(π22cos(θ)π+1)+2sin(θ){tan1{xsinθcot(θ)}0π}=2πcos(θ)ln{π22cos(θ)π+1}+2sin(θ){tan1{πsin(θ)cot(θ)}tan1{cot(θ)}=2πcos(θ)ln{π22cos(θ)π+1}+2sin(θ){arctan{πsin(θ)cot(θ)}arctan(tg(π2+θ))A(θ)=2π+(πcos(θ))ln(π22cos(θ)x+1)+2sin(θ)arctan(πcos(θ)sin(θ))2sin(θ)arctan(tan(π2+θ))arctan(tg(a))=aifa]π2.π2[ifa]π2+kπ.π2+kπ[arctantg(a)=akπ

Leave a Reply

Your email address will not be published. Required fields are marked *