Menu Close

calculate-0-pi-sin-2x-3-cos-4x-dx-




Question Number 128956 by mathmax by abdo last updated on 11/Jan/21
calculate ∫_0 ^π  ((sin(2x))/(3+cos(4x)))dx
calculate0πsin(2x)3+cos(4x)dx
Answered by chengulapetrom last updated on 11/Jan/21
cos4x=2cos^2 2x−1  ∫_0 ^π ((sin(2x))/(3+cos(4x)))dx=∫_0 ^π ((sin(2x))/(2+2cos^2 2x))dx  =−(1/4)∫_0 ^π ((−2sin(2x))/(1+cos^2 2x))dx  let t=cos2x⇒dt=−2sin2xdx  x=0⇒t=1 and x=π⇒t=1  ∫_1 ^1 (dt/(1+t^2 ))=0
cos4x=2cos22x10πsin(2x)3+cos(4x)dx=0πsin(2x)2+2cos22xdx=140π2sin(2x)1+cos22xdxlett=cos2xdt=2sin2xdxx=0t=1andx=πt=111dt1+t2=0
Commented by chengulapetrom last updated on 11/Jan/21
am I correct?
amIcorrect?
Answered by Olaf last updated on 11/Jan/21
Ω = ∫_0 ^π ((sin(2x))/(3+cos(4x)))dx  Ω = ∫_0 ^π ((sin(2x))/(3+2cos^2 (2x)−1))dx  Ω = −(1/4)∫_0 ^π ((−2sin(2x))/(1+cos^2 (2x)))dx  Ω = −(1/4)[arctan(cos(2x))]_0 ^π  = 0
Ω=0πsin(2x)3+cos(4x)dxΩ=0πsin(2x)3+2cos2(2x)1dxΩ=140π2sin(2x)1+cos2(2x)dxΩ=14[arctan(cos(2x))]0π=0
Answered by mathmax by abdo last updated on 11/Jan/21
let I=∫_0 ^π  ((sin(2x))/(3+cos(4x)))dx ⇒I=_(2x=t)   ∫_0 ^(2π)  ((sint)/(3+cos(2t)))(dt/2)  =(1/2)∫_0 ^(2π)  ((sint)/(3+1−2sin^2 t))dt =(1/2)∫_0 ^(2π)  ((sint)/(4−2sin^2 t))dt =(1/4)∫_0 ^(2π)  ((sint)/(2−sin^2 t))dt  ⇒4I =∫_0 ^π  ((sint)/(2−sin^2 t))dt +∫_π ^(2π)  ((sint)/(2−sin^2 t))dt(→t=x+π  =∫_0 ^π  ((sint)/(2−sin^2 t)) −∫_0 ^π  ((sinx)/(2−sin^2 x))dx =0 ⇒4I=0 ⇒I=0
letI=0πsin(2x)3+cos(4x)dxI=2x=t02πsint3+cos(2t)dt2=1202πsint3+12sin2tdt=1202πsint42sin2tdt=1402πsint2sin2tdt4I=0πsint2sin2tdt+π2πsint2sin2tdt(t=x+π=0πsint2sin2t0πsinx2sin2xdx=04I=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *