Menu Close

calculate-0-pi-tsint-3-sin-2-t-dt-




Question Number 64068 by mathmax by abdo last updated on 12/Jul/19
calculate ∫_0 ^π  ((tsint)/(3+sin^2 t)) dt
calculate0πtsint3+sin2tdt
Commented by mathmax by abdo last updated on 17/Jul/19
let A =∫_0 ^π   ((tsint)/(3 +sin^2 t))dt changement t =π−x give  A =−∫_0 ^π   (((π−x)sin(π−x))/(3+sin^2 (π−x))) (−dx) =∫_0 ^π  ((πsinx)/(3+sin^2 x))dx−∫_0 ^π  ((xsinx)/(3+sin^2 x))dx  ⇒2A =π ∫_0 ^π   ((sinx)/(3+sin^2 x)) dx ⇒A =(π/2) ∫_0 ^π   ((sinx )/(3+sin^2 x))dx  changement tan((x/2)) =u give   ∫_0 ^π   ((sinx)/(3+sin^2 x))dx =∫_0 ^∞     (((2u)/(1+u^2 ))/(3 +((4u^2 )/((1+u^2 )^2 )))) ((2du)/(1+u^2 ))  = ∫_0 ^∞      ((4u)/((1+u^2 )^2 {3 +((4u^2 )/((1+u^2 )^2 ))})) =∫_0 ^∞    ((4u)/(3(1+u^2 )^2  +4u^2 ))du  =∫_0 ^∞    ((4u)/(3(u^4  +2u^2  +1) +4u^2 ))du =∫_0 ^∞    ((4u)/(3u^4  +6u^2  +3 +4u^2 ))du  =∫_0 ^∞    ((4u)/(3u^4  +10u^2  +3))du  3u^4  +10 u^2  +3 =0 ⇒3x^2  +10x +3 =0   (x=u^2 )  Δ^′  =25−9 =16 ⇒x_1 =((−5 +4)/3) =−(1/3)  x_2 =((−5−4)/3) =−3 ⇒3x^2  +10x +3 =3(x+(1/3))(x+3) ⇒  3u^4  +10u^2  +3 =3(u^2  +(1/3))(u^2  +3) ⇒  ((4u)/(3u^4  +10u^2  +3)) =((4u)/3)(3/8){(1/(u^2  +(1/3)))−(1/(u^2  +3))}    =(u/2){ (1/(u^2  +(1/3)))−(1/(u^2  +3))} ⇒  ∫_0 ^∞   ((4u)/(3u^4  +10u^2  +3))du =(1/2){ ∫_0 ^∞   ((udu)/(u^2  +(1/3))) −∫_0 ^∞   ((u du)/(u^2  +3))}  =(1/4)[ln∣((u^2  +(1/3))/(u^2  +3))∣]_0 ^(+∞)  =(1/4)(−ln((1/9)))=((ln9)/4) =((2ln3)/4) =((ln3)/2) ⇒  A =(π/2) ((ln3)/2)  ⇒ A =((πln3)/4)
letA=0πtsint3+sin2tdtchangementt=πxgiveA=0π(πx)sin(πx)3+sin2(πx)(dx)=0ππsinx3+sin2xdx0πxsinx3+sin2xdx2A=π0πsinx3+sin2xdxA=π20πsinx3+sin2xdxchangementtan(x2)=ugive0πsinx3+sin2xdx=02u1+u23+4u2(1+u2)22du1+u2=04u(1+u2)2{3+4u2(1+u2)2}=04u3(1+u2)2+4u2du=04u3(u4+2u2+1)+4u2du=04u3u4+6u2+3+4u2du=04u3u4+10u2+3du3u4+10u2+3=03x2+10x+3=0(x=u2)Δ=259=16x1=5+43=13x2=543=33x2+10x+3=3(x+13)(x+3)3u4+10u2+3=3(u2+13)(u2+3)4u3u4+10u2+3=4u338{1u2+131u2+3}=u2{1u2+131u2+3}04u3u4+10u2+3du=12{0uduu2+130uduu2+3}=14[lnu2+13u2+3]0+=14(ln(19))=ln94=2ln34=ln32A=π2ln32A=πln34

Leave a Reply

Your email address will not be published. Required fields are marked *