Question Number 64068 by mathmax by abdo last updated on 12/Jul/19
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{tsint}}{\mathrm{3}+{sin}^{\mathrm{2}} {t}}\:{dt}\: \\ $$
Commented by mathmax by abdo last updated on 17/Jul/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{tsint}}{\mathrm{3}\:+{sin}^{\mathrm{2}} {t}}{dt}\:{changement}\:{t}\:=\pi−{x}\:{give} \\ $$$${A}\:=−\int_{\mathrm{0}} ^{\pi} \:\:\frac{\left(\pi−{x}\right){sin}\left(\pi−{x}\right)}{\mathrm{3}+{sin}^{\mathrm{2}} \left(\pi−{x}\right)}\:\left(−{dx}\right)\:=\int_{\mathrm{0}} ^{\pi} \:\frac{\pi{sinx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx}−\int_{\mathrm{0}} ^{\pi} \:\frac{{xsinx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\Rightarrow\mathrm{2}{A}\:=\pi\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}\:{dx}\:\Rightarrow{A}\:=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinx}\:}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$$${changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:={u}\:{give}\: \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{sinx}}{\mathrm{3}+{sin}^{\mathrm{2}} {x}}{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{3}\:+\frac{\mathrm{4}{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{4}{u}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} \left\{\mathrm{3}\:+\frac{\mathrm{4}{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\right\}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{4}{u}}{\mathrm{3}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\mathrm{4}{u}^{\mathrm{2}} }{du} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{4}{u}}{\mathrm{3}\left({u}^{\mathrm{4}} \:+\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}\right)\:+\mathrm{4}{u}^{\mathrm{2}} }{du}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{4}{u}}{\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{6}{u}^{\mathrm{2}} \:+\mathrm{3}\:+\mathrm{4}{u}^{\mathrm{2}} }{du} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{4}{u}}{\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{10}{u}^{\mathrm{2}} \:+\mathrm{3}}{du} \\ $$$$\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{10}\:{u}^{\mathrm{2}} \:+\mathrm{3}\:=\mathrm{0}\:\Rightarrow\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{10}{x}\:+\mathrm{3}\:=\mathrm{0}\:\:\:\left({x}={u}^{\mathrm{2}} \right) \\ $$$$\Delta^{'} \:=\mathrm{25}−\mathrm{9}\:=\mathrm{16}\:\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{5}\:+\mathrm{4}}{\mathrm{3}}\:=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}_{\mathrm{2}} =\frac{−\mathrm{5}−\mathrm{4}}{\mathrm{3}}\:=−\mathrm{3}\:\Rightarrow\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{10}{x}\:+\mathrm{3}\:=\mathrm{3}\left({x}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left({x}+\mathrm{3}\right)\:\Rightarrow \\ $$$$\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{10}{u}^{\mathrm{2}} \:+\mathrm{3}\:=\mathrm{3}\left({u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{3}}\right)\left({u}^{\mathrm{2}} \:+\mathrm{3}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{4}{u}}{\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{10}{u}^{\mathrm{2}} \:+\mathrm{3}}\:=\frac{\mathrm{4}{u}}{\mathrm{3}}\frac{\mathrm{3}}{\mathrm{8}}\left\{\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{3}}\right\}\:\:\:\:=\frac{{u}}{\mathrm{2}}\left\{\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{3}}\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{4}{u}}{\mathrm{3}{u}^{\mathrm{4}} \:+\mathrm{10}{u}^{\mathrm{2}} \:+\mathrm{3}}{du}\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{udu}}{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{3}}}\:−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}\:{du}}{{u}^{\mathrm{2}} \:+\mathrm{3}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[{ln}\mid\frac{{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{3}}}{{u}^{\mathrm{2}} \:+\mathrm{3}}\mid\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{\mathrm{4}}\left(−{ln}\left(\frac{\mathrm{1}}{\mathrm{9}}\right)\right)=\frac{{ln}\mathrm{9}}{\mathrm{4}}\:=\frac{\mathrm{2}{ln}\mathrm{3}}{\mathrm{4}}\:=\frac{{ln}\mathrm{3}}{\mathrm{2}}\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{2}}\:\frac{{ln}\mathrm{3}}{\mathrm{2}}\:\:\Rightarrow\:{A}\:=\frac{\pi{ln}\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$