calculate-0-pi-tsint-3-sin-2-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 64068 by mathmax by abdo last updated on 12/Jul/19 calculate∫0πtsint3+sin2tdt Commented by mathmax by abdo last updated on 17/Jul/19 letA=∫0πtsint3+sin2tdtchangementt=π−xgiveA=−∫0π(π−x)sin(π−x)3+sin2(π−x)(−dx)=∫0ππsinx3+sin2xdx−∫0πxsinx3+sin2xdx⇒2A=π∫0πsinx3+sin2xdx⇒A=π2∫0πsinx3+sin2xdxchangementtan(x2)=ugive∫0πsinx3+sin2xdx=∫0∞2u1+u23+4u2(1+u2)22du1+u2=∫0∞4u(1+u2)2{3+4u2(1+u2)2}=∫0∞4u3(1+u2)2+4u2du=∫0∞4u3(u4+2u2+1)+4u2du=∫0∞4u3u4+6u2+3+4u2du=∫0∞4u3u4+10u2+3du3u4+10u2+3=0⇒3x2+10x+3=0(x=u2)Δ′=25−9=16⇒x1=−5+43=−13x2=−5−43=−3⇒3x2+10x+3=3(x+13)(x+3)⇒3u4+10u2+3=3(u2+13)(u2+3)⇒4u3u4+10u2+3=4u338{1u2+13−1u2+3}=u2{1u2+13−1u2+3}⇒∫0∞4u3u4+10u2+3du=12{∫0∞uduu2+13−∫0∞uduu2+3}=14[ln∣u2+13u2+3∣]0+∞=14(−ln(19))=ln94=2ln34=ln32⇒A=π2ln32⇒A=πln34 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-and-the-roots-of-x-3-2x-1-0-find-the-value-of-A-2-2-2-and-B-3-3-3-Next Next post: Question-129608 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.