Menu Close

calculate-0-pi-x-dx-1-cosx-




Question Number 36937 by maxmathsup by imad last updated on 07/Jun/18
calculate  ∫_0 ^π    ((x dx)/(1+cosx))
calculate0πxdx1+cosx
Commented by math khazana by abdo last updated on 08/Jun/18
I =∫_0 ^(π/2)   ((xdx)/(1+cosx)) + ∫_(π/2) ^π    ((xdx)/(1+cosx))  but  ∫_(π/2) ^π   ((xdx)/(1+cosx)) =_(x=(π/2) +t)    ∫_0 ^(π/2)    ((((π/2)+t)dt)/(1−sint))  =(π/2) ∫_0 ^(π/2)     (dt/(1−sint))  + ∫_0 ^(π/2)    ((t sint)/(1−sin(t)))dt  ∫_0 ^(π/2)    ((xdx)/(1+cosx)) =_(tan((x/2))=t)   ∫_0 ^1     ((2arctan(t))/(1+((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =4 ∫_0 ^1     ((arctan(t))/(1+t^2  +1−t^2 ))dt =2 ∫_0 ^1   arctant dt  =2 {  [tarctan(t)]_0 ^1   −∫_0 ^1    (t/(1+t^2 ))dt}  =2{(π/4) −(1/2)[ln(1+t^2 )]_0 ^1 } =(π/2) −ln(2)  ∫_0 ^(π/2)      ((tsin(t))/(1−sin(t)))dt =_(tan((t/2))=x)   ∫_0 ^1    ((2arctant ((2t)/(1+t^2 )))/(1−((2t)/(1+t^2 ))))dt  = 4 ∫_0 ^1      ((t arctan(t))/(1+t^2  −2t)) dt =4 ∫_0 ^1  ((t arctan(t))/((t−1)^2 ))dt  by parts ∫_0 ^1   ((t arctan(t))/((t−1)^2 ))dt  =∫_0 ^1   (((t−1+1)arctan(t))/((t−1)^2 ))dt  =∫_0 ^1   ((arctant)/(t−1))dt  +∫_0 ^1   ((arctan(t))/((t−1)^2 ))dt but  ∫_0 ^1    ((arctan(t))/(1−t))dt =∫_0 ^1  (Σ_(n=0) ^∞ t^n )arctant dt  =Σ_(n=0) ^∞    ∫_0 ^1   t^n  arctan(t) dt =Σ_(n=0) ^∞  A_n   A_n = t^n  arctant  ∼ A t^n    because arctan is borned  ⇒ ∫_0 ^1  t^n  arctant dt ∼ (A/(n+1)) and Σ A_n  diverges  so this integral diverges and we do the same  manner for the other integral so I diverges..!
I=0π2xdx1+cosx+π2πxdx1+cosxbutπ2πxdx1+cosx=x=π2+t0π2(π2+t)dt1sint=π20π2dt1sint+0π2tsint1sin(t)dt0π2xdx1+cosx=tan(x2)=t012arctan(t)1+1t21+t22dt1+t2=401arctan(t)1+t2+1t2dt=201arctantdt=2{[tarctan(t)]0101t1+t2dt}=2{π412[ln(1+t2)]01}=π2ln(2)0π2tsin(t)1sin(t)dt=tan(t2)=x012arctant2t1+t212t1+t2dt=401tarctan(t)1+t22tdt=401tarctan(t)(t1)2dtbyparts01tarctan(t)(t1)2dt=01(t1+1)arctan(t)(t1)2dt=01arctantt1dt+01arctan(t)(t1)2dtbut01arctan(t)1tdt=01(n=0tn)arctantdt=n=001tnarctan(t)dt=n=0AnAn=tnarctantAtnbecausearctanisborned01tnarctantdtAn+1andΣAndivergessothisintegraldivergesandwedothesamemannerfortheotherintegralsoIdiverges..!

Leave a Reply

Your email address will not be published. Required fields are marked *