Menu Close

calculate-0-pi-x-dx-3-cosx-




Question Number 35241 by abdo mathsup 649 cc last updated on 17/May/18
calculate ∫_0 ^π     ((x dx)/(3 +cosx))  .
calculate0πxdx3+cosx.
Commented by abdo.msup.com last updated on 17/May/18
let put I=∫_0 ^π    ((xdx)/(3 +cosx)) .changement  tan((x/2))=t give  x =2arctan(t) and  I = ∫_0 ^∞      ((2arctan(t))/(3 +((1−t^2 )/(2+t^2 )))) ((2dt)/(1+t^2 ))  = 4∫_0 ^∞     ((arctan(t))/(3 +3t^2  +1−t^2 ))dt  =4 ∫_0 ^∞     ((arctan(t))/(4 +2t^2 ))dt=2∫_0 ^∞   ((arctan(t))/(2 +t^2 ))  =_(t=x(√2))    2∫_0 ^∞     ((arctan(x(√2)))/(2(1+x^2 )))(√2) dx  =(√2) ∫_0 ^∞      ((arctan(x(√2)))/(1+x^2 ))dx let introduce  the parametric function  f(t) =∫_0 ^∞     ((arctan(tx))/(1+x^2 ))dx  f^′ (t) = ∫_0 ^∞     (x/((1+t^2 x^2 )(1+x^2 )))dx  =_(tx =u)     ∫_0 ^∞      (u/(t(1+u^2 )(1+(u^2 /t^2 )))) (du/t)  = ∫_0 ^∞       (u/((1+u^2 )(t^2  +u^2 )))du  let  decompose g(u)= (u/((u^2  +1)(u^2  +t^2 )))  g(u) = ((au +b)/(u^2  +1))  +((cu +d)/(u^2  +t^2 ))  g(−u) =−g(u) ⇒b=d=0 so  g(u)= ((au)/(u^2 +1))  +((cu)/(u^2  +t^2 ))  lim_(u→+∞)  u g(u)=0 = a+c ⇒c=−a  g(u)= ((au)/(u^2 +1)) −((au)/(u^2  +t^2 ))  g(1)=(1/(2(1+t^2 ))) = (a/2) −(a/(t^2 +1)) ⇒   (1/2) =(1/2)(1+t^2 )a −a ⇒  1=(1+t^2 )a −2a =(t^2 −1)a ⇒  a= (1/(t^2 −1))    if  t^2 ≠1  so  g(u) = (1/(t^2 −1)) (u/(1+u^2 )) −(1/(t^2 −1)) (u/(t^2 +u^2 ))  f^′ (t) =∫_0 ^∞  g(u)du  =(1/(1−t^2 )){   ∫_0 ^∞   (u/(1+u^2 ))du −∫_0 ^∞    (u/(u^2  +t^2 ))du}  = (1/(2(1−t^2 )))[  ln(1+u^2 )−ln(u^2  +t^2 )]_0 ^(+∞)   = (1/(2(1−t^2 )))[ln(((u^2 +1)/(u^2  +t^2 )))]_0 ^(+∞)   = (1/(2(1−t^2 ))) {ln(t^2 )= ((ln(t))/(1−t^2 ))  f^′ (t) =  ((ln(t))/(1−t^2 ))  ⇒f(t)= ∫_0 ^t   ((lnx)/(1−x^2 ))dx +λ  λ=f(0)=0 ⇒ f(t)= ∫_0 ^t    ((ln(x))/(1−x^2 ))dx  I =(√2) f((√2))= (√2) ∫_0 ^(√2)     ((ln(x))/(1−x^2 ))dx...  be continued...
letputI=0πxdx3+cosx.changementtan(x2)=tgivex=2arctan(t)andI=02arctan(t)3+1t22+t22dt1+t2=40arctan(t)3+3t2+1t2dt=40arctan(t)4+2t2dt=20arctan(t)2+t2=t=x220arctan(x2)2(1+x2)2dx=20arctan(x2)1+x2dxletintroducetheparametricfunctionf(t)=0arctan(tx)1+x2dxf(t)=0x(1+t2x2)(1+x2)dx=tx=u0ut(1+u2)(1+u2t2)dut=0u(1+u2)(t2+u2)duletdecomposeg(u)=u(u2+1)(u2+t2)g(u)=au+bu2+1+cu+du2+t2g(u)=g(u)b=d=0sog(u)=auu2+1+cuu2+t2limu+ug(u)=0=a+cc=ag(u)=auu2+1auu2+t2g(1)=12(1+t2)=a2at2+112=12(1+t2)aa1=(1+t2)a2a=(t21)aa=1t21ift21sog(u)=1t21u1+u21t21ut2+u2f(t)=0g(u)du=11t2{0u1+u2du0uu2+t2du}=12(1t2)[ln(1+u2)ln(u2+t2)]0+=12(1t2)[ln(u2+1u2+t2)]0+=12(1t2){ln(t2)=ln(t)1t2f(t)=ln(t)1t2f(t)=0tlnx1x2dx+λλ=f(0)=0f(t)=0tln(x)1x2dxI=2f(2)=202ln(x)1x2dxbecontinued
Commented by abdo.msup.com last updated on 17/May/18
error  change 1−t^2  by t^2 −1 so  f(t)= ∫_0 ^t    ((ln(x))/(x^2 −1))dx  I =(√2) ∫_0 ^(√2)   ((ln(x))/(x^2 −1))dx.
errorchange1t2byt21sof(t)=0tln(x)x21dxI=202ln(x)x21dx.
Commented by abdo mathsup 649 cc last updated on 20/May/18
∫_0 ^(√2)    ((lnx)/(x^2 −1))dx = −∫_0 ^1   ((lnx)/(1−x^2 ))dx  +∫_1 ^(√2)  ((lnx)/(x^2  −1))dx but   ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =∫_0 ^1  (Σ_(n=0) ^∞  x^(2n) )lnxdx  =Σ_(n=0) ^∞   ∫_0 ^1   x^(2n)  ln(x)dx   by parts  A_n   = ∫_0 ^1  x^(2n)  ln(x)dx =[(1/(2n+1))x^(2n+1) ln(x)]_0 ^1   − ∫_0 ^1   (1/(2n+1))x^(2n+1)  (1/x)dx = −(1/((2n+1)^2 )) ∫_0 ^1   x^(2n) dx  =−(1/((2n+1)^2 )) ⇒ ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =−Σ_(n=0) ^∞   (1/((2n+1)^2 ))  we have (π^2 /6) =Σ_(n=1) ^∞    (1/n^2 ) =Σ_(n=1) ^∞   (1/((2n)^2 )) +Σ_(n=0) ^∞   (1/((2n+1)^2 ))  =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞    (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞   (1/((2n+1)^2 )) = (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(3/4) (π^2 /6) = (π^2 /8)
02lnxx21dx=01lnx1x2dx+12lnxx21dxbut01ln(x)1x2dx=01(n=0x2n)lnxdx=n=001x2nln(x)dxbypartsAn=01x2nln(x)dx=[12n+1x2n+1ln(x)]010112n+1x2n+11xdx=1(2n+1)201x2ndx=1(2n+1)201ln(x)1x2dx=n=01(2n+1)2wehaveπ26=n=11n2=n=11(2n)2+n=01(2n+1)2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34n=11n2=34π26=π28
Commented by abdo mathsup 649 cc last updated on 20/May/18
⇒ ∫_0 ^1   ((ln(x))/(x^2 −1))dx =−(π^2 /8)  changement x=(1/t) give  ∫_1 ^(√2)     ((ln(x))/(x^2 −1))dx =  ∫_1 ^(1/( (√2)))     ((−ln(t))/(( (1/t^2 ) −1))) (−(dt/t^2 ))  = −∫_(1/( (√2))) ^1     ((ln(t))/(1−t^2 ))dt   =−∫_(1/( (√2))) ^1  (Σ_(n=0) ^∞  t^(2n) )ln(t)dt  =−Σ_(n=0) ^∞   ∫_(1/( (√2))) ^1   t^(2n)  ln(t)dt =−Σ_(n=0) ^∞  A_n    by parts  A_(n ) =  [ (1/(2n+1))t^(2n+1) ln(t)]_(1/( (√2))) ^1  − ∫_(1/( (√2))) ^1    (1/(2n+1))t^(2n) dt  =(1/(2n+1))((1/( (√2))))^(2n+1) ln((√2)) −(1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞   A_n   = ln((√2))Σ_(n=0) ^∞  (1/(2n+1))((1/( (√2))))^(2n+1)  −Σ_(n=0) ^∞  (1/((2n+1)^2 ))  ⇒ ∫_1 ^(√2)    ((ln(x))/(x^2 −1))dx = ln((√2))Σ_(n=0) ^∞  (1/((2n+1)^2 ))((1/( (√2))))^(2n+1)     −(π^2 /8)
01ln(x)x21dx=π28changementx=1tgive12ln(x)x21dx=112ln(t)(1t21)(dtt2)=121ln(t)1t2dt=121(n=0t2n)ln(t)dt=n=0121t2nln(t)dt=n=0AnbypartsAn=[12n+1t2n+1ln(t)]12112112n+1t2ndt=12n+1(12)2n+1ln(2)1(2n+1)2n=0An=ln(2)n=012n+1(12)2n+1n=01(2n+1)212ln(x)x21dx=ln(2)n=01(2n+1)2(12)2n+1π28
Commented by prof Abdo imad last updated on 20/May/18
∫_1 ^(√2)     ((ln(x))/(x^2 −1))dx = ln((√2))Σ_(n=0) ^∞    (1/(2n+1))((1/( (√2))))^(2n+1) −(π^2 /8)  let calculate the value of Σ_(n=0) ^∞   (1/(2n+1))((1/( (√2))))^(2n+1)   let put S(x)= Σ_(n=0) ^∞   (1/(2n+1))x^(2n+1)   with ∣x∣<1  S^′ (x) = Σ_(n=0) ^∞    x^(2n)   = (1/(1−x^2 )) ⇒ S(x)= ∫ (dx/(1−x^2 )) +c  S(x)= (1/2)∫ {  (1/(1−x)) +(1/(1+x))}dx +c  =(1/2)ln∣((1+x)/(1−x))∣ +c  we have S(o)=0 ⇒c=0 ⇒  S(x) = (1/2)ln∣((1+x)/(1−x))∣ and  Σ_(n=0) ^∞   (1/(2n+1))((1/( (√2))))^(2n+1)  = S((1/( (√2))))   =(1/2)ln∣ ((1 +(1/( (√2))))/(1−(1/( (√2)))))∣ = (1/2)ln((((√2) +1)/( (√2) −1))) ⇒  ∫_1 ^(√2)      ((ln(x))/(x^2 −1))dx =((ln((√2)))/2)ln((((√2) +1)/( (√2) −1))) −(π^2 /8)
12ln(x)x21dx=ln(2)n=012n+1(12)2n+1π28letcalculatethevalueofn=012n+1(12)2n+1letputS(x)=n=012n+1x2n+1withx∣<1S(x)=n=0x2n=11x2S(x)=dx1x2+cS(x)=12{11x+11+x}dx+c=12ln1+x1x+cwehaveS(o)=0c=0S(x)=12ln1+x1xandn=012n+1(12)2n+1=S(12)=12ln1+12112=12ln(2+121)12ln(x)x21dx=ln(2)2ln(2+121)π28
Commented by prof Abdo imad last updated on 20/May/18
so I =(√2)   ∫_0 ^(√2)    ((ln(x))/(x^2  −1))dx  =(√2){ ∫_0 ^1    ((ln(x))/(x^2 −1))dx + ∫_1 ^(√2)    ((ln(x))/(x^2  −1))dx}  =(√2_ ) { −(π^2 /8)  +((ln((√2)))/2)ln((((√2) +1)/( (√2) −1))) −(π^2 /8)}  I =(√2){  ((ln((√2)))/2)ln((((√2) +1)/( (√2) −1))) −(π^2 /4)}
soI=202ln(x)x21dx=2{01ln(x)x21dx+12ln(x)x21dx}=2{π28+ln(2)2ln(2+121)π28}I=2{ln(2)2ln(2+121)π24}
Answered by math1967 last updated on 17/May/18
∫_(0 ) ^π ((xdx)/(3+2cos^2 (x/2)−1))=∫_(0 ) ^π ((xdx)/(2(1+cos^2 (x/2))))  now 2I=π∫_0 ^π (dx/(2(1+cos^2 (x/2))))  =(π/2)∫_0 ^π ((sec^2 (x/2)dx)/(sec^2 (x/2)+1))  =π∫_0 ^π (((1/2)sec^2 (x/2)dx)/(2+tan^2 (x/2)))  =π∫_0 ^π ((d(tan(x/2)))/(((√2))^2 +tan^2 (x/2)))=π[(1/( (√2)))tan^(−1) tan (x/(2(√2)))]_0 ^π   =π×[(1/( (√2)))×(π/(2(√2)))]=(π^2 /4)∴I=(π^2 /8)  plz. check
π0xdx3+2cos2x21=π0xdx2(1+cos2x2)now2I=ππ0dx2(1+cos2x2)=π2π0sec2x2dxsec2x2+1=ππ012sec2x2dx2+tan2x2=ππ0d(tanx2)(2)2+tan2x2=π[12tan1tanx22]0π=π×[12×π22]=π24I=π28plz.check
Commented by MJS last updated on 17/May/18
in this case if f(x)=((x/2)/(1+cos^2  (x/2))) ⇒  ⇒ f(π−x)=(((π−x)/2)/(1+sin^2  (x/2)))  and we get f(x)+f(π−x)=  =((3π)/(8+sin^2  x))+((πcos x)/(8+sin^2  x))−((2xcos x)/(8+sin^2  x))  we can solve the 1^(st)  and 2^(nd)  but the 3^(rd)  looks  nasty again...
inthiscaseiff(x)=x21+cos2x2f(πx)=πx21+sin2x2andwegetf(x)+f(πx)==3π8+sin2x+πcosx8+sin2x2xcosx8+sin2xwecansolvethe1stand2ndbutthe3rdlooksnastyagain
Commented by math1967 last updated on 17/May/18
OK thanks
OKthanks
Answered by math1967 last updated on 17/May/18
2I=∫_0 ^π ((xdx)/(3+cosx))+∫_0 ^π (((π−x)dx)/(3+cos(π−x)))  =π∫_0 ^π ((6dx)/((3+cosx)(3−cosx)))  =6π∫_0 ^π (dx/(9−cos^2 x))=6π∫_0 ^π ((sec^2 xdx)/(9sec^2 x−1))  =6π∫_0 ^π ((sec^2 xdx)/(8+9tan^2 x))=2π∫_0 ^π ((3sec^2 xdx)/((2(√(2  )))^2 +(3tan x)^2 ))  =2π∫_0 ^π ((d(3tanx))/((2(√2))^2 +(3tan x)^2 ))  =2π[(1/(2(√2)))tan^(−1) ((3tan x)/(2(√2)))]_0 ^π   =2π[(1/(2(√2)))×(π/2) −0]  =(π^2 /(2(√2))) ∴ I=(π^2 /(4(√2)))
2I=π0xdx3+cosx+π0(πx)dx3+cos(πx)=ππ06dx(3+cosx)(3cosx)=6ππ0dx9cos2x=6ππ0sec2xdx9sec2x1=6ππ0sec2xdx8+9tan2x=2ππ03sec2xdx(22)2+(3tanx)2=2ππ0d(3tanx)(22)2+(3tanx)2=2π[122tan13tanx22]0π=2π[122×π20]=π222I=π242
Commented by MJS last updated on 17/May/18
this seems wrong:  (x/(3+cos x))+((π−x)/(3+cos (π−x)))=(x/(3+cos x))+((π−x)/(3−cos x))=  =((3π+(π−2x)cos x)/(9−cos^2  x))≠((6π)/(9−cos^2  x))  please explain  (π^2 /(4(√2)))≈1.744716  but I get ∫_0 ^π (x/(3+cos x))dx≈1.988159
thisseemswrong:x3+cosx+πx3+cos(πx)=x3+cosx+πx3cosx==3π+(π2x)cosx9cos2x6π9cos2xpleaseexplainπ2421.744716butIgetπ0x3+cosxdx1.988159
Commented by math1967 last updated on 17/May/18
Yes it is my mistake
Yesitismymistake

Leave a Reply

Your email address will not be published. Required fields are marked *