Question Number 63033 by mathmax by abdo last updated on 28/Jun/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\: \\ $$
Commented by mathmax by abdo last updated on 28/Jun/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:\Rightarrow\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:{sin}^{\mathrm{2}} {x}\left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{dx}\:−\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:={H}−{K} \\ $$$${by}\:{parts}\:{H}\:=\left[−\frac{\mathrm{1}}{{x}}{sin}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \:\:−\frac{\mathrm{1}}{{x}}\mathrm{2}{sinx}\:{cosxdx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=_{\mathrm{2}{x}={t}} \:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({t}\right)}{\frac{{t}}{\mathrm{2}}}\:\frac{{dt}}{\mathrm{2}}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sint}}{{t}}{dt}\:=\frac{\pi}{\mathrm{2}}\:\:\left({result}\:{proved}\right) \\ $$$${K}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{4}}\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\mathrm{2}{x}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\right)\:{let}\:{W}\left({z}\right)\:=\frac{{e}^{{i}\mathrm{2}{z}} }{{z}^{\mathrm{2}} \:+\mathrm{1}}\:{the}\:{poles}\:{of}\:{W}\:{are}\:\overset{−} {+}{i} \\ $$$${residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right)\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\mathrm{2}} }{\mathrm{2}{i}}\:\:=\frac{\pi}{{e}^{\mathrm{2}} }\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\frac{\pi}{{e}^{\mathrm{2}} }\:\Rightarrow \\ $$$${K}\:=\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}{e}^{\mathrm{2}} }\:\Rightarrow\:{A}\:=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:+\frac{\pi}{\mathrm{4}{e}^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{4}}\:+\frac{\pi}{\mathrm{4}{e}^{\mathrm{2}} }\:\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\right). \\ $$