Menu Close

calculate-0-sin-2-x-x-2-1-x-2-dx-




Question Number 63033 by mathmax by abdo last updated on 28/Jun/19
calculate ∫_0 ^∞   ((sin^2 (x))/(x^2 (1+x^2 )))dx
calculate0sin2(x)x2(1+x2)dx
Commented by mathmax by abdo last updated on 28/Jun/19
let A =∫_0 ^∞   ((sin^2 x)/(x^2 (1+x^2 ))) dx ⇒ A =∫_0 ^∞  sin^2 x{(1/x^2 ) −(1/(1+x^2 ))}dx  =∫_0 ^∞  ((sin^2 x)/x^2 )dx −∫_0 ^∞ ((sin^2 x)/(1+x^2 ))dx =H−K  by parts H =[−(1/x)sin^2 x]_0 ^(+∞)  −∫_0 ^∞   −(1/x)2sinx cosxdx  =∫_0 ^∞     ((sin(2x))/x)dx =_(2x=t)      ∫_0 ^∞    ((sin(t))/(t/2)) (dt/2) =∫_0 ^∞  ((sint)/t)dt =(π/2)  (result proved)  K =∫_0 ^∞    ((1−cos(2x))/(2(1+x^2 )))dx =(1/2)∫_0 ^∞   (dx/(1+x^2 )) −(1/2)∫_0 ^∞   ((cos(2x))/(1+x^2 ))dx  =(π/4) −(1/4)∫_(−∞) ^(+∞)    ((cos(2x))/(1+x^2 ))dx  ∫_(−∞) ^(+∞)  ((cos(2x))/(1+x^2 ))dx =Re(∫_(−∞) ^(+∞)   (e^(i2x) /(x^2  +1))dx) let W(z) =(e^(i2z) /(z^2  +1)) the poles of W are +^− i  residus theorem give  ∫_(−∞) ^(+∞)   W(z)dz =2iπ Res(W,i) =2iπ (e^(−2) /(2i))  =(π/e^2 ) ⇒ ∫_(−∞) ^(+∞)  ((cos(2x))/(1+x^2 ))dx =(π/e^2 ) ⇒  K =(π/4)−(π/(4e^2 )) ⇒ A =(π/2) −(π/4) +(π/(4e^2 )) =(π/4) +(π/(4e^2 ))  ⇒  A =(π/4)(1+(1/e^2 )).
letA=0sin2xx2(1+x2)dxA=0sin2x{1x211+x2}dx=0sin2xx2dx0sin2x1+x2dx=HKbypartsH=[1xsin2x]0+01x2sinxcosxdx=0sin(2x)xdx=2x=t0sin(t)t2dt2=0sinttdt=π2(resultproved)K=01cos(2x)2(1+x2)dx=120dx1+x2120cos(2x)1+x2dx=π414+cos(2x)1+x2dx+cos(2x)1+x2dx=Re(+ei2xx2+1dx)letW(z)=ei2zz2+1thepolesofWare+iresidustheoremgive+W(z)dz=2iπRes(W,i)=2iπe22i=πe2+cos(2x)1+x2dx=πe2K=π4π4e2A=π2π4+π4e2=π4+π4e2A=π4(1+1e2).

Leave a Reply

Your email address will not be published. Required fields are marked *