Menu Close

calculate-0-sin-x-6-dx-




Question Number 91621 by abdomathmax last updated on 02/May/20
calculate ∫_0 ^∞  sin(x^6 )dx
calculate0sin(x6)dx
Commented by mathmax by abdo last updated on 02/May/20
∫_0 ^∞  sin(x^6 )dx =Im(∫_0 ^∞  e^(ix^6 ) dx)  we have by changement ix^6  =−t  ⇒x^6  =it ⇒ x =(it)^(1/6)  =e^((iπ)/(12))  t^(1/6)  ⇒  ∫_0 ^∞  e^(ix^6 ) dx =e^((iπ)/(12)) ∫_0 ^∞    e^(−t)  ×(1/6) t^((1/6)−1)  dt  =(1/6)e^((iπ)/(12))   ∫_0 ^∞  t^((1/6)−1)  e^(−t)  dt     we have Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t)  dt  =(1/6)Γ((1/6))(cos((π/(12)))+isin((π/(12)))) ⇒∫_0 ^∞  sin(x^6 )dx=(1/6)Γ((1/6))sin((π/(12)))
0sin(x6)dx=Im(0eix6dx)wehavebychangementix6=tx6=itx=(it)16=eiπ12t160eix6dx=eiπ120et×16t161dt=16eiπ120t161etdtwehaveΓ(x)=0tx1etdt=16Γ(16)(cos(π12)+isin(π12))0sin(x6)dx=16Γ(16)sin(π12)

Leave a Reply

Your email address will not be published. Required fields are marked *