Menu Close

calculate-0-sin-x-sh-2x-dx-




Question Number 43906 by abdo.msup.com last updated on 17/Sep/18
calculate ∫_0 ^∞  ((sin(x))/(sh(2x)))dx
calculate0sin(x)sh(2x)dx
Commented by maxmathsup by imad last updated on 20/Sep/18
let A = ∫_0 ^∞   ((sinx)/(sh(2x)))dx ⇒ A = ∫_0 ^∞   ((2sinx)/(e^(2x) −e^(−2x) )) dx  = ∫_0 ^∞    ((e^(−2x)  sinx)/(1−e^(−4x) ))dx =∫_0 ^∞  e^(−2x) (Σ_(n=0) ^∞  e^(−4nx) )sinx dx  = Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(4n+2)x) sinx dx =Σ_(n=0) ^∞  A_n  and A_n =Im(  ∫_0 ^∞ e^(−(4n+2 −i)x)  dx) but  ∫_0 ^∞  e^(−(4n+2 +i)x) dx =[−(1/(4n+2−i)) e^(−(4n+2+i)x) ]_0 ^(+∞) =(1/(4n+2−i))  ((4n+2+i)/((4n+2)^2 +1)) ⇒ A_n = (1/((4n+2)^2  +1)) ⇒ A = Σ_(n=0) ^∞    (1/(4(2n+1)^2  +1))  and this serie can be calculated  by Fourier... be continued...
letA=0sinxsh(2x)dxA=02sinxe2xe2xdx=0e2xsinx1e4xdx=0e2x(n=0e4nx)sinxdx=n=00e(4n+2)xsinxdx=n=0AnandAn=Im(0e(4n+2i)xdx)but0e(4n+2+i)xdx=[14n+2ie(4n+2+i)x]0+=14n+2i4n+2+i(4n+2)2+1An=1(4n+2)2+1A=n=014(2n+1)2+1andthisseriecanbecalculatedbyFourierbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *