Question Number 105545 by 4635 last updated on 29/Jul/20

Answered by Ar Brandon last updated on 29/Jul/20
![Let f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx⇒f ′(a)=−∫_0 ^∞ sinx∙e^(−ax) dx Let; p=∫_0 ^∞ cosx∙e^(−ax) dx , q=∫_0 ^∞ sinx∙e^(−ax) dx ⇒p−iq=∫_0 ^∞ (cosx−isinx)e^(−ax) dx=∫_0 ^∞ e^(−ix−ax) dx=∫_0 ^∞ e^(−(a+i)x) dx =−(1/(a+i))∙[e^(−(a+i)x) ]_0 ^∞ =(1/(a+i)) {lim_(x→∞) e^(−(a+i)x) =0} =((a−i)/(a^2 +1))=(a/(a^2 +1))−i((1/(a^2 +1))) ⇒ Im(p−iq)=Im{(a/(a^2 +1))−i((1/(a^2 +1)))}⇒q=(1/(a^2 +1)) ⇒f ′(a)=−q=−(1/(a^2 +1))⇒f(a)=−[Arctan(a)+C] But f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx , lim_(a→+∞) f(a)=0 ⇒lim_(a→+∞) [Arctan(a)+C]=0⇒C=−(π/2) f(0)=∫_0 ^∞ ((sinx)/x)dx=−[Arctan(0)+C]=(π/2) Hence ∫_0 ^∞ ((sinx)/x)dx=(π/2)](https://www.tinkutara.com/question/Q105548.png)
Answered by Aziztisffola last updated on 29/Jul/20
![Using Laplace transforms. L{((sinx)/x)}=∫_s ^( ∞) L{sinx}dt=∫_s ^( ∞) (1/(1+t^2 ))dt =[arctan(t)]_s ^(t→∞) =(π/2)−arctan(s) then ∫_0 ^( ∞) e^(−sx) ((sin x)/x) dx=(π/2)−arctan(s) let s=0 ⇒∫_0 ^∞ ((sin x)/x)dx=(π/2)−arctan(0)=(π/2) Hence ∫_0 ^∞ ((sin x)/x)dx=(π/2)](https://www.tinkutara.com/question/Q105550.png)
Commented by 4635 last updated on 29/Jul/20

Commented by Aziztisffola last updated on 29/Jul/20

Answered by 1549442205PVT last updated on 30/Jul/20
