Menu Close

calculate-0-sin-x-x-dx-




Question Number 105545 by 4635 last updated on 29/Jul/20
calculate ∫_0 ^∞ ((sin x)/x)dx
calculate0sinxxdx
Answered by Ar Brandon last updated on 29/Jul/20
Let f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx⇒f ′(a)=−∫_0 ^∞ sinx∙e^(−ax) dx  Let; p=∫_0 ^∞ cosx∙e^(−ax) dx , q=∫_0 ^∞ sinx∙e^(−ax) dx  ⇒p−iq=∫_0 ^∞ (cosx−isinx)e^(−ax) dx=∫_0 ^∞ e^(−ix−ax) dx=∫_0 ^∞ e^(−(a+i)x) dx                   =−(1/(a+i))∙[e^(−(a+i)x) ]_0 ^∞ =(1/(a+i))   {lim_(x→∞) e^(−(a+i)x) =0}                   =((a−i)/(a^2 +1))=(a/(a^2 +1))−i((1/(a^2 +1)))  ⇒ Im(p−iq)=Im{(a/(a^2 +1))−i((1/(a^2 +1)))}⇒q=(1/(a^2 +1))  ⇒f ′(a)=−q=−(1/(a^2 +1))⇒f(a)=−[Arctan(a)+C]  But f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx , lim_(a→+∞) f(a)=0  ⇒lim_(a→+∞) [Arctan(a)+C]=0⇒C=−(π/2)  f(0)=∫_0 ^∞ ((sinx)/x)dx=−[Arctan(0)+C]=(π/2)  Hence ∫_0 ^∞ ((sinx)/x)dx=(π/2)
Letf(a)=0sinxxeaxdxf(a)=0sinxeaxdxLet;p=0cosxeaxdx,q=0sinxeaxdxpiq=0(cosxisinx)eaxdx=0eixaxdx=0e(a+i)xdx=1a+i[e(a+i)x]0=1a+i{limex(a+i)x=0}=aia2+1=aa2+1i(1a2+1)Im(piq)=Im{aa2+1i(1a2+1)}q=1a2+1f(a)=q=1a2+1f(a)=[Arctan(a)+C]Butf(a)=0sinxxeaxdx,limfa+(a)=0lima+[Arctan(a)+C]=0C=π2f(0)=0sinxxdx=[Arctan(0)+C]=π2Hence0sinxxdx=π2
Answered by Aziztisffola last updated on 29/Jul/20
 Using Laplace transforms.   L{((sinx)/x)}=∫_s ^( ∞) L{sinx}dt=∫_s ^( ∞) (1/(1+t^2 ))dt  =[arctan(t)]_s ^(t→∞) =(π/2)−arctan(s)  then ∫_0 ^( ∞) e^(−sx)  ((sin x)/x) dx=(π/2)−arctan(s)  let s=0 ⇒∫_0 ^∞ ((sin x)/x)dx=(π/2)−arctan(0)=(π/2)   Hence ∫_0 ^∞ ((sin x)/x)dx=(π/2)
UsingLaplacetransforms.L{sinxx}=sL{sinx}dt=s11+t2dt=[arctan(t)]st=π2arctan(s)then0esxsinxxdx=π2arctan(s)lets=00sinxxdx=π2arctan(0)=π2Hence0sinxxdx=π2
Commented by 4635 last updated on 29/Jul/20
thank you very much
thankyouverymuch
Commented by Aziztisffola last updated on 29/Jul/20
you′re welcome
yourewelcome
Answered by 1549442205PVT last updated on 30/Jul/20
Set I(k,λ)=∫_0 ^∞ e^(−kx) ((sinλx)/x)dx   Differentiate the integration I by λ we get   (dI/dλ)=∫_0 ^∞ e^(−kx) .(1/x).(sinλx)′ dx=∫_0 ^∞ e^(−kx) cosλxdx  =(1/λ)∫_0 ^∞ e^(−kx) dsinλx=((e^(−kx) sinλx)/λ)∣_(x=0) ^∞ +(k/λ)∫_0 ^∞ e^(−kx) sinλxdx  =((e^(−kx) sinλx)/λ)∣_0 ^∞ −(k/λ^2 )∫_0 ^∞ e^(−kx) dcosλx  =(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞ −(k^2 /λ^2 )∫e^(−kx) cosλxdx  Thus,(dI/dλ)=(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞ −(k^2 /λ).(dI/dλ)  ⇒⇒(1+(k^2 /λ^2 )).(dI/dλ)=(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞   (dI/dλ)=((e^(−kx) (λsinλx−kcosλx))/(k^2 +λ^2 ))∣_0 ^∞ =(k/(λ^2 +k^2 ))  ⇒I=tan^(−1) ((λ/k))(as ∫(dx/(x^2 +a^2 ))=(1/a)tan^(−1) ((x/a)))  Consequently,I(k,λ)=∫_0 ^∞ e^(−kx) ((sinλx)/x)dx =tan^(−1) ((λ/k))  It follows that   J=∫_0 ^∞ ((sinλx)/x)dx =lim_(k→0) ∫_0 ^∞ e^(−kx) ((sinλx)/x)dx   =lim_(k→0) tan^(−1) ((λ/k))=(π/2)(if λ>0)  Therefore,K=∫_0 ^∞ ((sinx)/x)dx =(𝛑/2)
SetI(k,λ)=0ekxsinλxxdxDifferentiatetheintegrationIbyλwegetdIdλ=0ekx.1x.(sinλx)dx=0ekxcosλxdx=1λ0ekxdsinλx=ekxsinλxλx=0+kλ0ekxsinλxdx=ekxsinλxλ0kλ20ekxdcosλx=(ekxsinλxλkekxcosλxλ2)0k2λ2ekxcosλxdxThus,dIdλ=(ekxsinλxλkekxcosλxλ2)0k2λ.dIdλ⇒⇒(1+k2λ2).dIdλ=(ekxsinλxλkekxcosλxλ2)0dIdλ=ekx(λsinλxkcosλx)k2+λ20=kλ2+k2I=tan1(λk)(asdxx2+a2=1atan1(xa))Consequently,I(k,λ)=0ekxsinλxxdx=tan1(λk)ItfollowsthatJ=0sinλxxdx=limk00ekxsinλxxdx=limtank01(λk)=π2(ifλ>0)\boldsymbolTherefore,\boldsymbolK=0\boldsymbolsinx\boldsymbolx\boldsymboldx=\boldsymbolπ2

Leave a Reply

Your email address will not be published. Required fields are marked *