Menu Close

calculate-0-th-3x-th-2x-x-dx-




Question Number 32339 by abdo imad last updated on 23/Mar/18
calculate  ∫_0 ^(+∞)    ((th(3x) −th(2x))/x) dx .
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)\:−{th}\left(\mathrm{2}{x}\right)}{{x}}\:{dx}\:. \\ $$
Commented by abdo imad last updated on 24/Mar/18
I =lim _(ξ→+∞) I(ξ)  with I(ξ) = ∫_0 ^(ξ  )   ((th(3x)−th(2x))/x)dx  I(ξ) = ∫_0 ^ξ    ((th(3x))/x) dx −∫_0 ^ξ  ((th(2x))/x)dx  but ch.3x=t give  ∫_0 ^ξ   ((th(3x))/x)dx = ∫_0 ^(3ξ)   ((th(t))/(t/3)) (dt/3) =∫_0 ^(3ξ)   ((th(t))/t)dt also we have  ∫_0 ^ξ  ((th(2x))/x)dx = ∫_0 ^(2ξ)   ((th(t))/t)dt ⇒  I(ξ) = ∫_0 ^(3ξ)  ((th(t))/t)dt −∫_0 ^(2ξ)   ((th(t))/t)dt =∫_(2ξ) ^(3ξ)    ((th(t))/t)dt but  ∃ c ∈]2ξ,3ξ[ / I(ξ) =th(c) ∫_(2ξ) ^(3ξ)   (dt/t)=ln((3/2))th(c)  ⇒  lim_(ξ→+∞)  I(ξ) =ln(3)−ln(2) .( look that lim_(c→+∞) thc=1)
$${I}\:={lim}\:_{\xi\rightarrow+\infty} {I}\left(\xi\right)\:\:{with}\:{I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi\:\:} \:\:\frac{{th}\left(\mathrm{3}{x}\right)−{th}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}\:{dx}\:−\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:\:{but}\:{ch}.\mathrm{3}{x}={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{\frac{{t}}{\mathrm{3}}}\:\frac{{dt}}{\mathrm{3}}\:=\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{also}\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\frac{{th}\left({t}\right)}{{t}}{dt}\:−\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:=\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{but} \\ $$$$\left.\exists\:{c}\:\in\right]\mathrm{2}\xi,\mathrm{3}\xi\left[\:/\:{I}\left(\xi\right)\:={th}\left({c}\right)\:\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\frac{{dt}}{{t}}={ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){th}\left({c}\right)\:\:\Rightarrow\right. \\ $$$${lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:={ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right)\:.\left(\:{look}\:{that}\:{lim}_{{c}\rightarrow+\infty} {thc}=\mathrm{1}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *