Question Number 32339 by abdo imad last updated on 23/Mar/18
$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)\:−{th}\left(\mathrm{2}{x}\right)}{{x}}\:{dx}\:. \\ $$
Commented by abdo imad last updated on 24/Mar/18
$${I}\:={lim}\:_{\xi\rightarrow+\infty} {I}\left(\xi\right)\:\:{with}\:{I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi\:\:} \:\:\frac{{th}\left(\mathrm{3}{x}\right)−{th}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\xi} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}\:{dx}\:−\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:\:{but}\:{ch}.\mathrm{3}{x}={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\:\frac{{th}\left(\mathrm{3}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{\frac{{t}}{\mathrm{3}}}\:\frac{{dt}}{\mathrm{3}}\:=\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{also}\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\xi} \:\frac{{th}\left(\mathrm{2}{x}\right)}{{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:\Rightarrow \\ $$$${I}\left(\xi\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}\xi} \:\frac{{th}\left({t}\right)}{{t}}{dt}\:−\int_{\mathrm{0}} ^{\mathrm{2}\xi} \:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:=\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\:\frac{{th}\left({t}\right)}{{t}}{dt}\:{but} \\ $$$$\left.\exists\:{c}\:\in\right]\mathrm{2}\xi,\mathrm{3}\xi\left[\:/\:{I}\left(\xi\right)\:={th}\left({c}\right)\:\int_{\mathrm{2}\xi} ^{\mathrm{3}\xi} \:\:\frac{{dt}}{{t}}={ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){th}\left({c}\right)\:\:\Rightarrow\right. \\ $$$${lim}_{\xi\rightarrow+\infty} \:{I}\left(\xi\right)\:={ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right)\:.\left(\:{look}\:{that}\:{lim}_{{c}\rightarrow+\infty} {thc}=\mathrm{1}\right) \\ $$$$ \\ $$