Menu Close

calculate-0-tsin-2t-t-2-4-dt-




Question Number 106899 by abdomathmax last updated on 07/Aug/20
calculate ∫_0 ^∞   ((tsin(2t))/(t^2 +4)) dt
calculate0tsin(2t)t2+4dt
Answered by mathmax by abdo last updated on 08/Aug/20
A =∫_0 ^∞  ((t sin(2t))/(t^2  +4))dt ⇒2A =∫_(−∞) ^(+∞)  ((tsin(2t))/(t^2  +4))dt  =Im(∫_(−∞) ^(+∞)  ((t e^(2it) )/(t^2  +4))dt)  let ϕ(z) =((z e^(2iz) )/(z^2  +4)) ⇒ϕ(z) =((z e^(2iz) )/((z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ ,2i) =2iπ×((2ie^(2i(2i)) )/(4i)) =iπ e^(−4)  ⇒  2A =πe^(−4)  ⇒ A =(π/2) e^(−4)
A=0tsin(2t)t2+4dt2A=+tsin(2t)t2+4dt=Im(+te2itt2+4dt)letφ(z)=ze2izz2+4φ(z)=ze2iz(z2i)(z+2i)+φ(z)dz=2iπRes(φ,2i)=2iπ×2ie2i(2i)4i=iπe42A=πe4A=π2e4

Leave a Reply

Your email address will not be published. Required fields are marked *