Menu Close

calculate-0-x-1-and-1-y-2-e-x-y-dxdy-




Question Number 46847 by maxmathsup by imad last updated on 01/Nov/18
calculate  ∫∫_(0≤x≤1 and 1≤y≤2)   e^(x/y) dxdy
calculate0x1and1y2exydxdy
Commented by maxmathsup by imad last updated on 04/Nov/18
I =∫_1 ^2  (∫_0 ^1  e^(x/y) dx)dy  but ∫_0 ^1  e^(x/y)  dx =[y e^(x/y) ]_(x=0) ^(x =1) = y(e^(1/y) −1)  ⇒  I =∫_1 ^2  (y e^(1/y) )dy −∫_1 ^2 ydy  but ∫_1 ^2 ydy =[(y^2 /2)]_1 ^2  =2−(1/2) =(3/2) and  ∫_1 ^2  y e^(1/y) dy =_((1/y)=t)   ∫_(1/2) ^1  (1/t) e^t  (dt/t^2 ) =∫_(1/2) ^1  (e^t /t^3 )dt  =∫_(1/2) ^1  t^(−3)  e^t  dt   =[−(1/2) t^(−2)  e^t ]_(1/2) ^1   +∫_(1/2) ^1  (1/2) t^(−2)  e^t dt  =(1/2){ 4 e^(1/2) −e}  +(1/2){ [−(1/t) e^t ]_(1/2) ^1  +∫_(1/2) ^1   (1/t) e^t dt}  2(√e)−(e/2) +(1/2){2(√e)−e + ∫_(1/2) ^1  (e^t /t) dt}  =3(√e)−e  +(1/2) ∫_(1/2) ^1  (e^t /t) dt  and  ∫_(1/2) ^1  (e^t /t) dt =∫_(1/2) ^1  (1/t)(Σ_(n=0) ^∞  (t^n /(n!)))dt  =∫_(1/2) ^1  (1/t)(1+Σ_(n=1) ^∞  (t^n /(n!)))dt =ln(2) +Σ_(n=1) ^∞  (1/(n!)) ∫_(1/2) ^1  t^(n−1) dt  =ln(2)+Σ_(n=1) ^∞  (1/(n.(n!)))(1−(1/2^n )) ...be continued...
I=12(01exydx)dybut01exydx=[yexy]x=0x=1=y(e1y1)I=12(ye1y)dy12ydybut12ydy=[y22]12=212=32and12ye1ydy=1y=t1211tetdtt2=121ett3dt=121t3etdt=[12t2et]121+12112t2etdt=12{4e12e}+12{[1tet]121+1211tetdt}2ee2+12{2ee+121ettdt}=3ee+12121ettdtand121ettdt=1211t(n=0tnn!)dt=1211t(1+n=1tnn!)dt=ln(2)+n=11n!121tn1dt=ln(2)+n=11n.(n!)(112n)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *