Menu Close

calculate-0-x-2-1-2x-2-3-3-dx-




Question Number 36419 by abdo.msup.com last updated on 01/Jun/18
calculate ∫_0 ^∞    ((x^2 −1)/((2x^2  +3)^3 ))dx
calculate0x21(2x2+3)3dx
Commented by abdo.msup.com last updated on 04/Jun/18
we have I = ∫_0 ^∞    ((x^2 −1)/(8( x^2  +(3/2))^3 ))dx  8 I = ∫_0 ^∞      ((x^2  −1)/((x^2  +(3/2))^3 ))dx  16 I = ∫_(−∞) ^(+∞)   ((x^2  −1)/((x^2  +(3/2))^3 ))dx let consider  the complex function  ϕ(z)= ((z^2  −1)/((z^2  +(3/2))^3 ))  we have   ϕ(z) = ((z^2  −1)/((z −i(√(3/2)))^3 (z +i(√(3/2)))^3 ))  the?roots of ϕ are i(√(3/2))  and −i(√(3/2))  (triples) so  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res( ϕ ,i(√(3/2)))  Res(ϕ,i(√(3/2)))=lim_(z→i(√(3/2)))    (1/((3−1)!)){(z−i(√(3/2)))^3 ϕ(z)}^((2))   =lim_(z→i(√(3/2)))   (1/2){ ((z^2  −1)/((z+i(√(3/2)))^3 ))}^((2))   =lim_(z→i(√(3/2)))   (1/2){ ((2z(z+i(√(3/2)))^3  −3(z+i(√(3/2)))^2 (z^2  −1))/((z+i(√(3/2)))^6 ))}^((1))   =lim_(z→i(√(3/2)))  (1/2){ ((2z(z +i(√(3/2))) −3(z^2 −1))/((z +i(√(3/2)))^4 ))}^((1))   ...
wehaveI=0x218(x2+32)3dx8I=0x21(x2+32)3dx16I=+x21(x2+32)3dxletconsiderthecomplexfunctionφ(z)=z21(z2+32)3wehaveφ(z)=z21(zi32)3(z+i32)3the?rootsofφarei32andi32(triples)so+φ(z)dz=2iπRes(φ,i32)Res(φ,i32)=limzi321(31)!{(zi32)3φ(z)}(2)=limzi3212{z21(z+i32)3}(2)=limzi3212{2z(z+i32)33(z+i32)2(z21)(z+i32)6}(1)=limzi3212{2z(z+i32)3(z21)(z+i32)4}(1)
Commented by abdo.msup.com last updated on 04/Jun/18
we have { ((2z(z +i(√(3/2))) −3(z^(2 ) −1))/((z +i(√(3/2)))^4 ))}^((1))   = { ((−z^2   +2i(√(3/2)) z +3)/((z +i(√(3/2)))^4 ))}^((1))   =(((−2z  +2i(√(3/2)))(z +i(√(3/2)))^4  −4(z +i(√(3/2)))^3 ( −z^2  +2i(√(3/2)) z+3))/((z +i(√(3/2)))^8 ))  ={ (((−2z  +2i(√(3/2)))(z +i(√(3/2)))−4(−z^2  +2i(√(3/2)) z +3))/((z +i(√(3/2)))^5 ))  2Res(ϕ,i(√(3/2)))={ ((−4((3/2) −2 (3/2) +3))/((2i(√(3/2)))^5 ))}  = ((−6)/(2^5 i ((√(3/2)))(9/4))) =  ((−6)/(8i(√(3/2)).9))  = ((−2.3)/(2.4i.3.3(√(3/2)))) = −(1/(4i((√3)/( (√2))))) = ((−(√2))/(4i(√3)))  Res(ϕ,i(√(3/2)))= ((−(√2))/(8i(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((−(√2))/(8i(√3))) = ((−π(√2))/(4(√3))) .
wehave{2z(z+i32)3(z21)(z+i32)4}(1)={z2+2i32z+3(z+i32)4}(1)=(2z+2i32)(z+i32)44(z+i32)3(z2+2i32z+3)(z+i32)8={(2z+2i32)(z+i32)4(z2+2i32z+3)(z+i32)52Res(φ,i32)={4(32232+3)(2i32)5}=625i(32)94=68i32.9=2.32.4i.3.332=14i32=24i3Res(φ,i32)=28i3+φ(z)dz=2iπ28i3=π243.
Commented by abdo.msup.com last updated on 04/Jun/18
error in the final lined  Res(ϕ,i(√(3/2))) = ((−(√2))/(12i(√3)))  and  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((−(√2))/(12i(√3)))   = −((√2)/(6(√3))) .
errorinthefinallinedRes(φ,i32)=212i3and+φ(z)dz=2iπ212i3=263.

Leave a Reply

Your email address will not be published. Required fields are marked *