calculate-0-x-2-1-2x-2-3-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36419 by abdo.msup.com last updated on 01/Jun/18 calculate∫0∞x2−1(2x2+3)3dx Commented by abdo.msup.com last updated on 04/Jun/18 wehaveI=∫0∞x2−18(x2+32)3dx8I=∫0∞x2−1(x2+32)3dx16I=∫−∞+∞x2−1(x2+32)3dxletconsiderthecomplexfunctionφ(z)=z2−1(z2+32)3wehaveφ(z)=z2−1(z−i32)3(z+i32)3the?rootsofφarei32and−i32(triples)so∫−∞+∞φ(z)dz=2iπRes(φ,i32)Res(φ,i32)=limz→i321(3−1)!{(z−i32)3φ(z)}(2)=limz→i3212{z2−1(z+i32)3}(2)=limz→i3212{2z(z+i32)3−3(z+i32)2(z2−1)(z+i32)6}(1)=limz→i3212{2z(z+i32)−3(z2−1)(z+i32)4}(1)… Commented by abdo.msup.com last updated on 04/Jun/18 wehave{2z(z+i32)−3(z2−1)(z+i32)4}(1)={−z2+2i32z+3(z+i32)4}(1)=(−2z+2i32)(z+i32)4−4(z+i32)3(−z2+2i32z+3)(z+i32)8={(−2z+2i32)(z+i32)−4(−z2+2i32z+3)(z+i32)52Res(φ,i32)={−4(32−232+3)(2i32)5}=−625i(32)94=−68i32.9=−2.32.4i.3.332=−14i32=−24i3Res(φ,i32)=−28i3∫−∞+∞φ(z)dz=2iπ−28i3=−π243. Commented by abdo.msup.com last updated on 04/Jun/18 errorinthefinallinedRes(φ,i32)=−212i3and∫−∞+∞φ(z)dz=2iπ−212i3=−263. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-2-4a-2-0-a-2-a-4-4-12a-2-Next Next post: let-f-x-0-arctan-xt-2-1-t-4-dt-1-calculate-f-x-2-find-a-simple-form-of-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.