calculate-0-x-2-2cosx-1-x-4-x-2-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48720 by Abdo msup. last updated on 27/Nov/18 calculate∫0∞x2−2cosx+1x4+x2+1dx Commented by Abdo msup. last updated on 28/Nov/18 letI=∫0∞x2−2cosx+1x4+x2+1dx⇒2I=∫−∞+∞x2+1x4+x2+1dx−∫−∞+∞2cosxx4+x2+1dx=H−KletfindHletφ(z)=z2+1z4+z2+1polesofφ?z4+z2+1=0⇒t2+t+1=0(t=z2)Δ=−3=(i3)2⇒z1=−1+i32=ei2π3andz2=e−i2π3z2=ei2π3⇒z=+−eiπ3z2=e−i2π3⇒z=+−e−iπ3⇒φ(z)=z2+1(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)Res(φ,eiπ3)=e2iπ3+12eiπ3(2isin(π3)(2cos(π3))=eiπ3+e−iπ38isin(π3)cos(π3)=2cos(π3)8isin(π3)cos(π3)=14i32=12i3Res(φ,−e−iπ3)=e−2iπ3+1−2cos(π3)(2isin(π3))(−2e−iπ3)=eiπ3+e−iπ38icos(π3)sin(π3)=2cos(π3)8icos(π3)sin(π3)=14isin(π3)=14i32=12i3⇒∫−∞+∞φ(z)dz=2iπ{12i3+12i3}=2π3=H Commented by Abdo msup. last updated on 28/Nov/18 letfindKK=∫−∞+∞2cosxx4+x2+1dx=Re(∫−∞+∞2eixx4+x2+1dx)letW(z)=2eizz4+z2+1⇒W(z)=2eizz4+z2+1⇒W(z)=2eiz(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)}Res(φ,eiπ3)=2ei(cosπ3+isin(π3))2eiπ3(2isin(π3))2cos(π3)=ei(12+i32)4isin(π3)cos(π3)e−iπ3=e−32ei(12−π3)4i32.12=e−32i3ei(12−π3)Res(φ,−e−iπ3)=2ei(cosπ3−isin(π3))−2cos(π3)(2isin(π3)(−2e−iπ3)=ei(12−i32)4icos(π3)sin(π3)eiπ3=e32ei(12+π3)4i1232=e32ei(12+π3)i3⇒∫−∞+∞W(z)dz=2iπ1i3{e−32ei(12−π3)+e32ei(12+π3{}=2π3{e−32{cos(12−π3)+isin(12−π3)+e32{cos(12+π3)+isin(12+π3)}}K=Re(∫−∞+∞W(z)dz)=2π3{e−32cos(12−π3)+e32cos(12+π3)}sothevalueofIisdetermined. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-I-n-0-1-1-t-2-n-dt-1-calculate-I-n-by-recurrence-2-find-the-value-of-k-0-n-1-k-2k-1-C-n-k-Next Next post: lim-x-0-x-arc-sin-x-2-x-cos-x-sin-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.