Menu Close

calculate-0-x-2-2cosx-1-x-4-x-2-1-dx-




Question Number 48720 by Abdo msup. last updated on 27/Nov/18
calculate ∫_0 ^∞     ((x^2  −2cosx+1)/(x^4  +x^2  +1))dx
calculate0x22cosx+1x4+x2+1dx
Commented by Abdo msup. last updated on 28/Nov/18
let I = ∫_0 ^∞   ((x^2 −2cosx +1)/(x^4  +x^2  +1))dx ⇒  2I =∫_(−∞) ^(+∞)  ((x^2  +1)/(x^4  +x^2  +1))dx −∫_(−∞) ^(+∞)   ((2cosx)/(x^4  +x^2  +1))dx=H−K  let find H let ϕ(z)=((z^2  +1)/(z^4  +z^2  +1)) poles of ϕ?  z^4  +z^2  +1=0 ⇒t^2  +t+1=0  (t=z^2 )  Δ=−3=(i(√3))^2  ⇒z_1 =((−1+i(√3))/2) =e^((i2π)/3)   and z_2 =e^(−((i2π)/3))   z^2 =e^((i2π)/3)  ⇒ z =+^−  e^((iπ)/3)   z^2 =e^(−((i2π)/3))  ⇒z =+^−  e^(−((iπ)/3))  ⇒  ϕ(z)=((z^2  +1)/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )  Res(ϕ,e^((iπ)/3) )=((e^(2((iπ)/3)) +1)/(2e^((iπ)/3) (2isin((π/3))(2cos((π/3)))))  =((e^((iπ)/3)  +e^(−((iπ)/3)) )/(8i sin((π/3))cos((π/3)))) =((2cos((π/3)))/(8isin((π/3))cos((π/3)))) =(1/(4i((√3)/2))) =(1/(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =((e^(−((2iπ)/3)) +1)/(−2cos((π/3))(2isin((π/3)))(−2e^(−((iπ)/3)) )))  =((e^((iπ)/3)  +e^((−iπ)/3) )/(8i cos((π/3))sin((π/3)))) =((2cos((π/3)))/(8i cos((π/3))sin((π/3))))  =(1/(4isin((π/3)))) = (1/(4i ((√3)/2))) =(1/(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (1/(2i(√3))) +(1/(2i(√3)))} =((2π)/( (√3))) =H
letI=0x22cosx+1x4+x2+1dx2I=+x2+1x4+x2+1dx+2cosxx4+x2+1dx=HKletfindHletφ(z)=z2+1z4+z2+1polesofφ?z4+z2+1=0t2+t+1=0(t=z2)Δ=3=(i3)2z1=1+i32=ei2π3andz2=ei2π3z2=ei2π3z=+eiπ3z2=ei2π3z=+eiπ3φ(z)=z2+1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)Res(φ,eiπ3)=e2iπ3+12eiπ3(2isin(π3)(2cos(π3))=eiπ3+eiπ38isin(π3)cos(π3)=2cos(π3)8isin(π3)cos(π3)=14i32=12i3Res(φ,eiπ3)=e2iπ3+12cos(π3)(2isin(π3))(2eiπ3)=eiπ3+eiπ38icos(π3)sin(π3)=2cos(π3)8icos(π3)sin(π3)=14isin(π3)=14i32=12i3+φ(z)dz=2iπ{12i3+12i3}=2π3=H
Commented by Abdo msup. last updated on 28/Nov/18
let find K  K = ∫_(−∞) ^(+∞)  ((2cosx)/(x^4  +x^2  +1))dx =Re(∫_(−∞) ^(+∞)  ((2 e^(ix) )/(x^(4 )  +x^2  +1))dx)  let W(z) =((2 e^(iz) )/(z^4  +z^2  +1)) ⇒  W(z)=((2 e^(iz) )/(z^4  +z^2  +1)) ⇒W(z) =((2 e^(iz) )/((z−e^((iπ)/3) )(z +e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) = ((2 e^(i(cos(π/3)+isin((π/3)))) )/(2 e^((iπ)/3) (2i sin((π/3)))2cos((π/3))))  = (e^(i((1/2)+i((√3)/2))) /(4isin((π/3))cos((π/3)))) e^(−((iπ)/3))   =((e^(−((√3)/2))  e^(i((1/2)−(π/3))) )/(4i((√3)/2).(1/2)))  =(e^(−((√3)/2)) /(i(√3))) e^(i((1/2)−(π/3)))   Res(ϕ,−e^(−((iπ)/3)) ) = ((2 e^(i(cos(π/3)−isin((π/3)))) )/(−2cos((π/3))(2isin((π/3))(−2 e^((−iπ)/3) )))  =(e^(i((1/2)−i((√3)/2))) /(4i cos((π/3))sin((π/3)))) e^((iπ)/3)  =((e^((√3)/2)  e^(i((1/2)+(π/3))) )/(4i (1/2) ((√3)/2))) = ((e^((√3)/(2 ))   e^(i((1/2)+(π/3))) )/(i(√3))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ(1/(i(√3))){  e^(−((√3)/2))  e^(i((1/2)−(π/3)))  + e^((√3)/2)  e^(i((1/2)+(π/3){) }  =((2π)/( (√3))){ e^(−((√3)/2)) {cos((1/2)−(π/3))+isin((1/2)−(π/3))+  e^((√3)/2) { cos((1/2)+(π/3))+i sin((1/2)+(π/3))}}  K =Re(∫_(−∞) ^(+∞) W(z)dz)  =((2π)/( (√3))){ e^(−((√3)/2)) cos((1/2)−(π/3)) +e^((√3)/2) cos((1/2) +(π/3))}  so thevalue of I is determined.
letfindKK=+2cosxx4+x2+1dx=Re(+2eixx4+x2+1dx)letW(z)=2eizz4+z2+1W(z)=2eizz4+z2+1W(z)=2eiz(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=2ei(cosπ3+isin(π3))2eiπ3(2isin(π3))2cos(π3)=ei(12+i32)4isin(π3)cos(π3)eiπ3=e32ei(12π3)4i32.12=e32i3ei(12π3)Res(φ,eiπ3)=2ei(cosπ3isin(π3))2cos(π3)(2isin(π3)(2eiπ3)=ei(12i32)4icos(π3)sin(π3)eiπ3=e32ei(12+π3)4i1232=e32ei(12+π3)i3+W(z)dz=2iπ1i3{e32ei(12π3)+e32ei(12+π3{}=2π3{e32{cos(12π3)+isin(12π3)+e32{cos(12+π3)+isin(12+π3)}}K=Re(+W(z)dz)=2π3{e32cos(12π3)+e32cos(12+π3)}sothevalueofIisdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *