calculate-0-x-2-3-x-4-x-2-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65130 by turbo msup by abdo last updated on 25/Jul/19 calculate∫0∞x2−3(x4+x2+2)2dx Commented by mathmax by abdo last updated on 26/Jul/19 letI=∫0∞x2−3(x4+x2+2)2⇒2I=∫−∞+∞x2−3(x4+x2+2)2dxletφ(z)=z2−3(z4+z2+2)2polesofφ?z4+z2+2=0⇒t2+t+2=0(t=z2)Δ=1−8=(i7)2⇒t1=−1+i72andt2=−1−i72∣t1∣=14+74=2⇒t1=2{−122+i722}=2eiarctan(−7)t2=conj(t1)=2eiarctan(7)⇒t2+t+2=(t−2e−iarctan(7))(t−2eiarctan(7))=(z2−2e−iarctan(7))(z2−2eiarctan(7))=(z−2e−i2arctan(7))(z+2e−i2arctan(7))(z−2ei2arctan(7))(z+2ei2arctan(7))⇒φ(z)=z2−3(z−re−i2arctan(7))2(z+re−i2arctan(7))2(z−rei2arctan(7))2(z+rei2arctan(7))2thepolesofφare+−re−i2arctan(7)and+−rei2arctan(7)withr=2residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,rei2arctan(7))+Res(φ,−re−i2arctan(7)}becontinued…. Commented by mathmax by abdo last updated on 26/Jul/19 Res(φ,rei2arctan(7))=limz→rei2arctan(7)1(2−1)!{(z−rei2arctan(7))2φ(z)}(1)=limz→rei2arctan(7){z2−3(z+rei2arctan(7))2(z2−r2e−iarctan(7))2}(1)=limz→rei2arctan(7)2zD−(z2−3)D′D2D′=2(z+rei2arctan(7))(z2−r2e−iarctan(7))2+4z(z2−r2e−iarctan(7))(z+rei2arctan(7))2=…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-dx-x-2-x-1-3-Next Next post: calculate-0-dx-x-4-4i-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.