Menu Close

calculate-0-x-2-3-x-4-x-2-2-2-dx-




Question Number 65130 by turbo msup by abdo last updated on 25/Jul/19
calculate ∫_0 ^∞    ((x^2 −3)/((x^4 +x^2 +2)^2 ))dx
calculate0x23(x4+x2+2)2dx
Commented by mathmax by abdo last updated on 26/Jul/19
let I =∫_0 ^∞   ((x^2 −3)/((x^4  +x^2  +2)^2 )) ⇒2I =∫_(−∞) ^(+∞)   ((x^2 −3)/((x^4  +x^2  +2)^2 ))dx let  ϕ(z)=((z^2 −3)/((z^4  +z^2  +2)^2 ))   poles of ϕ?  z^4  +z^2  +2 =0 ⇒t^2  +t +2 =0    (t=z^2 )  Δ =1−8 =(i(√7))^2  ⇒t_1 =((−1+i(√7))/2)  and t_2 =((−1−i(√7))/2)  ∣t_1 ∣ =(√((1/4)+(7/4)))=(√2) ⇒t_1 =(√2){((−1)/(2(√2))) +((i(√7))/(2(√2)))} =(√2)e^(iarctan(−(√7)))   t_2 =conj(t_1 ) =(√2)e^(iarctan((√7)))   ⇒t^2 +t+2 =(t−(√2)e^(−iarctan((√7))) )(t−(√2)e^(iarctan((√7))) )  =(z^2 −(√2)e^(−iarctan((√7))) )(z^2 −(√2)e^(iarctan((√7))) )  =(z−(√(√2))e^(−(i/2)arctan((√7))) )(z+(√(√2))e^(−(i/2)arctan((√7))) )(z−(√(√2))e^((i/2)arctan((√7))) )(z+(√(√2))e^((i/2)arctan((√7))) ) ⇒  ϕ(z) =((z^2 −3)/((z−re^(−(i/2)arctan((√7))) )^2 (z+r e^(−(i/2)arctan((√7))) )^2 (z−re^((i/2)arctan((√7))) )^2 (z+r e^((i/2)arctan((√7))) )^2 ))  the poles of ϕ are +^− r e^(−(i/2)arctan((√7)))   and +^− r e^((i/2)arctan((√7)))   with r =(√(√2))    residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,r e^((i/2)arctan((√7))) ) +Res(ϕ,−r e^(−(i/2)arctan((√7))) }  be continued....
letI=0x23(x4+x2+2)22I=+x23(x4+x2+2)2dxletφ(z)=z23(z4+z2+2)2polesofφ?z4+z2+2=0t2+t+2=0(t=z2)Δ=18=(i7)2t1=1+i72andt2=1i72t1=14+74=2t1=2{122+i722}=2eiarctan(7)t2=conj(t1)=2eiarctan(7)t2+t+2=(t2eiarctan(7))(t2eiarctan(7))=(z22eiarctan(7))(z22eiarctan(7))=(z2ei2arctan(7))(z+2ei2arctan(7))(z2ei2arctan(7))(z+2ei2arctan(7))φ(z)=z23(zrei2arctan(7))2(z+rei2arctan(7))2(zrei2arctan(7))2(z+rei2arctan(7))2thepolesofφare+rei2arctan(7)and+rei2arctan(7)withr=2residustheoremgive+φ(z)dz=2iπ{Res(φ,rei2arctan(7))+Res(φ,rei2arctan(7)}becontinued.
Commented by mathmax by abdo last updated on 26/Jul/19
Res(ϕ,r e^((i/2)arctan((√7))) ) =lim_(z→r e^((i/2)arctan((√7))) )  (1/((2−1)!))  {(z−r e^((i/2)arctan((√7))) )^2 ϕ(z)}^((1))   =lim_(z→re^((i/2)arctan((√7))) )     {((z^2 −3)/((z+r e^((i/2)arctan((√7))) )^2 (z^2 −r^2  e^(−i arctan((√7))) )^2 ))}^((1))   =lim_(z→r e^((i/2)arctan((√7)))    )    ((2z D−(z^2 −3)D^′ )/D^2 )  D^′  =2(z+r e^((i/2)arctan((√7))) )(z^2 −r^2 e^(−iarctan((√7))) )^2   +4z (z^2 −r^2 e^(−iarctan((√7))) )(z+r e^((i/2)arctan((√7))) )^2  =....
Res(φ,rei2arctan(7))=limzrei2arctan(7)1(21)!{(zrei2arctan(7))2φ(z)}(1)=limzrei2arctan(7){z23(z+rei2arctan(7))2(z2r2eiarctan(7))2}(1)=limzrei2arctan(7)2zD(z23)DD2D=2(z+rei2arctan(7))(z2r2eiarctan(7))2+4z(z2r2eiarctan(7))(z+rei2arctan(7))2=.

Leave a Reply

Your email address will not be published. Required fields are marked *