Question Number 36202 by prof Abdo imad last updated on 30/May/18
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} {dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by math khazana by abdo last updated on 18/Aug/18
$${let}\:{A}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:{dx} \\ $$$$\mathrm{2}{A}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }{dx}\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\:{we}\:{have}\: \\ $$$$\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left({z}−{i}\right)^{\mathrm{3}} \left({z}+{i}\right)^{\mathrm{3}} }\:\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i} \\ $$$$\left({triples}\right)\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left(\mathrm{3}−\mathrm{1}\right)!}\:\:\left\{\:\left({z}−{i}\right)^{\mathrm{3}} \:\varphi\left({z}\right)\right\}^{\left(\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{z}\rightarrow{i}} \:\:\:\:\left\{\:\frac{{z}^{\mathrm{2}} }{\left({z}+{i}\right)^{\mathrm{3}} }\right\}^{\left(\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{{z}\rightarrow{i}} \:\left\{\:\:\:\:\frac{\mathrm{2}{z}\left({z}+{i}\right)^{\mathrm{3}} \:−\mathrm{3}\left({z}+{i}\right)^{\mathrm{2}} {z}^{\mathrm{2}} }{\left({z}+{i}\right)^{\mathrm{6}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{z}\rightarrow{i}} \:\:\left\{\:\:\frac{\mathrm{2}{z}\left({z}+{i}\right)−\mathrm{3}{z}^{\mathrm{2}} }{\left({z}+{i}\right)^{\mathrm{4}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{z}\rightarrow{i}} \:\left\{\:\:\frac{−{z}^{\mathrm{2}} \:+\mathrm{2}{iz}}{\left({z}+{i}\right)^{\mathrm{4}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{z}\rightarrow{i}} \:\left\{\:\frac{\left(−\mathrm{2}{z}+\mathrm{2}{i}\right)\left({z}+{i}\right)^{\mathrm{4}} \:−\mathrm{4}\left({z}+{i}\right)^{\mathrm{3}} \left(−{z}^{\mathrm{2}} \:+\mathrm{2}{iz}\right)}{\left({z}+{i}\right)^{\mathrm{8}} }\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{lim}_{{z}\rightarrow{i}} \frac{\left(−\mathrm{2}{z}+\mathrm{2}{i}\right)\left({z}+{i}\right)−\mathrm{4}\left(−{z}^{\mathrm{2}} \:+\mathrm{2}{iz}\right)}{\left({z}+{i}\right)^{\mathrm{5}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\:\frac{−\mathrm{4}\left(\mathrm{1}−\mathrm{2}\right)}{\left(\mathrm{2}{i}\right)^{\mathrm{5}} }\:=\:\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{5}} {i}}\:=\frac{\mathrm{1}}{{i}\:\mathrm{2}^{\mathrm{4}} }\:=\frac{\mathrm{1}}{\mathrm{16}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{1}}{\mathrm{16}{i}}\:\:=\frac{\pi}{\mathrm{8}}\:=\mathrm{2}{A}\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{16}}\:. \\ $$$$ \\ $$$$ \\ $$