Question Number 111025 by mathmax by abdo last updated on 01/Sep/20
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$
Answered by mathdave last updated on 01/Sep/20
$${solution} \\ $$$${let}\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }{dx} \\ $$$${I}\left({a}\right)=\frac{\partial}{\partial{a}}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}+{a}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }{dx} \\ $$$$\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} {I}\left({a}\right)=\frac{\partial}{\partial{a}}\beta\left(\mathrm{3}+{a},\mathrm{1}−{a}\right)=\frac{\partial}{\partial{a}}\left[\frac{\Gamma\left(\mathrm{3}+{a}\right)\Gamma\left(\mathrm{1}−{a}\right)}{\Gamma\left(\mathrm{4}\right)}\right] \\ $$$${I}^{'} \left({a}\right)=\frac{\Gamma\left(\mathrm{3}+{a}\right)\Gamma\left(\mathrm{1}−{a}\right)}{\Gamma\left(\mathrm{4}\right)}\left[\psi\left(\mathrm{3}+{a}\right)−\psi\left(\mathrm{1}−{a}\right)\right] \\ $$$${I}^{'} \left(\mathrm{0}\right)=\frac{\Gamma\left(\mathrm{3}\right)\Gamma\left(\mathrm{1}\right)}{\Gamma\left(\mathrm{4}\right)}\left[\psi\left(\mathrm{3}\right)−\psi\left(\mathrm{1}\right)\right] \\ $$$${I}^{'} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{\mathrm{3}}{\mathrm{2}}−\gamma+\gamma\right]=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\because\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}\right)^{\mathrm{4}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${mathdave} \\ $$