Menu Close

calculate-0-x-2-lnx-1-x-6-dx-




Question Number 130136 by mathmax by abdo last updated on 22/Jan/21
calculate  ∫_0 ^∞   ((x^2 lnx)/(1+x^6 ))dx
calculate0x2lnx1+x6dx
Answered by Dwaipayan Shikari last updated on 22/Jan/21
I′(2)=((−π^2 )/6^2 ).((cos(((2+1)/6)π))/(sin^2 (((2+1)/6)π)))=0 (Proved Earlier)
I(2)=π262.cos(2+16π)sin2(2+16π)=0(ProvedEarlier)
Answered by Ar Brandon last updated on 22/Jan/21
I=∫_0 ^1 ((x^2 lnx)/(1+x^6 ))dx+∫_1 ^∞ ((x^2 lnx)/(1+x^6 ))dx     =∫_0 ^1 ((x^2 lnx)/(1+x^6 ))dx−∫_0 ^1 ((t^2 lnt)/(1+t^2 ))dt=0
I=01x2lnx1+x6dx+1x2lnx1+x6dx=01x2lnx1+x6dx01t2lnt1+t2dt=0
Answered by mathmax by abdo last updated on 23/Jan/21
I=∫_0 ^∞  ((x^2 lnx)/(1+x^6 ))dx  we do the changement x^6  =t ⇒  I =(1/6)∫_0 ^∞   (((t^(1/6) )^2  ln(t^(1/6) ))/(1+t)) t^((1/6)−1)  dt =(1/(36))∫_0 ^∞  ((t^((1/3)+(1/6)−1) ln(t))/(1+t))dt  =(1/(36))∫_0 ^∞  ((t^(−(1/2)) ln(t))/(1+t))dt  but  ∫_0 ^∞   ((t^(a−1) lnt)/(1+t))dt =−((π^2 cos(πa))/(sin^2 (πa))) ⇒  ∫_0 ^∞ ((t^(−(1/2)) ln(t))/(1+t))dt =−((π^2 cos((π/2)))/(sin^2 ((π/2))))=0 ⇒I=0
I=0x2lnx1+x6dxwedothechangementx6=tI=160(t16)2ln(t16)1+tt161dt=1360t13+161ln(t)1+tdt=1360t12ln(t)1+tdtbut0ta1lnt1+tdt=π2cos(πa)sin2(πa)0t12ln(t)1+tdt=π2cos(π2)sin2(π2)=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *