Menu Close

calculate-0-x-3-1-x-5-dx-




Question Number 33027 by prof Abdo imad last updated on 09/Apr/18
calculate ∫_0 ^∞   (x^3 /(1+x^5 ))dx.
calculate0x31+x5dx.
Answered by Joel578 last updated on 14/Apr/18
I = ∫_0 ^∞  (x^3 /(1 + x^5 )) dx  u = x^5   →  du = 5x^4  dx    I = (1/5)∫_0 ^∞  (x^(−1) /(1 + u)) du = (1/5) ∫_0 ^∞  (u^(−(1/5)) /(1 + u)) du     = (1/5) ∫_0 ^∞  (u^((4/5) − 1) /(1 + u)) du     (∫_0 ^∞  (t^(a − 1) /(1 + t)) dt = (π/(sin (πa))))     = (π/(5sin (((4π)/5))))     = ((4π)/(5(√(10 − 2(√5))))) ≈ 1.07
I=0x31+x5dxu=x5du=5x4dxI=150x11+udu=150u151+udu=150u4511+udu(0ta11+tdt=πsin(πa))=π5sin(4π5)=4π510251.07
Commented by Joel578 last updated on 10/Apr/18
sin (((4π)/5)) = sin ((π/5)) = (1/4)(√(10 − 2(√5)))
sin(4π5)=sin(π5)=141025

Leave a Reply

Your email address will not be published. Required fields are marked *