Menu Close

calculate-0-x-n-sh-x-dx-with-n-integr-natural-




Question Number 85009 by mathmax by abdo last updated on 18/Mar/20
calculate ∫_0 ^∞   (x^n /(sh(x)))dx with n integr natural
calculate0xnsh(x)dxwithnintegrnatural
Commented by mathmax by abdo last updated on 18/Mar/20
let A_n =∫_0 ^∞  (x^n /(sh(x)))dx ⇒A_n =2∫_0 ^∞   (x^n /(e^x −e^(−x) ))dx  =2 ∫_0 ^∞  ((e^(−x)  x^n )/(1−e^(−2x) ))dx =2 ∫_0 ^∞   x^n  e^(−x) (Σ_(k=0) ^∞  e^(−2kx) )dx  =2 Σ_(k=0) ^∞  ∫_0 ^∞  x^n  e^(−(2k+1)x)  dx =_((2k+1)x=t)   2Σ_(k=0) ^∞ ∫_0 ^∞  ((t/(2k+1)))^n  e^(−t)  (dt/((2k+1)))  =2 Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))∫_0 ^∞   t^n  e^(−t)  dt =2Γ(n+1)Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))  we have ξ(x)=Σ_(k=1) ^∞  (1/k^x ) ⇒ξ(n+1)=Σ_(k=1) ^∞  (1/k^(n+1) )  =Σ_(k=1) ^∞  (1/((2k)^(n+1) ))+Σ_(k=0) ^∞  (1/((2k+1)^(n+1) )) =(1/2^(n+1) )Σ_(k=1) ^∞  (1/k^(n+1) ) +Σ_(k=0) ^∞  (1/((2k+1)^(n+1) ))  ⇒Σ_(k=0) ^∞  (1/((2k+1)^(n+1) )) =(1−(1/2^(n+1) ))ξ(n+1) ⇒  A_n =2Γ(n+1)(1−(1/2^(n+1) ))ξ(n+1)  =(2−(1/2^n ))(n!)ξ(n+1)
letAn=0xnsh(x)dxAn=20xnexexdx=20exxn1e2xdx=20xnex(k=0e2kx)dx=2k=00xne(2k+1)xdx=(2k+1)x=t2k=00(t2k+1)netdt(2k+1)=2k=01(2k+1)n+10tnetdt=2Γ(n+1)k=01(2k+1)n+1wehaveξ(x)=k=11kxξ(n+1)=k=11kn+1=k=11(2k)n+1+k=01(2k+1)n+1=12n+1k=11kn+1+k=01(2k+1)n+1k=01(2k+1)n+1=(112n+1)ξ(n+1)An=2Γ(n+1)(112n+1)ξ(n+1)=(212n)(n!)ξ(n+1)
Answered by mind is power last updated on 18/Mar/20
∫_0 ^(+∞) ((2x^n e^x dx)/((e^x −1)(e^x +1)))  =∫_0 ^(+∞) ((x^n dx)/(e^x −1))+∫_0 ^(+∞) (x^n /(e^x +1))dx  =∫_0 ^(+∞) ((x^n e^(−x) )/(1−e^(−x) ))dx  =∫_0 ^(+∞) x^n Σ_(k≥0) e^(−(k+1)x) dx+∫_0 ^(+∞) x^n .Σ_(k≥0) (−1)^k e^(−(1+k)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) x^n e^(−(k+1)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) (y^n /((k+1)^(n+1) ))e^(−y) dy  =Γ(n+1)ζ(n+1)  ∫_0 ^(+∞) x^n .Σ_(k≥0) (−1)^k e^(−(1+k)x) dx  =Σ_(k≥0) ∫_0 ^(+∞) (y^n /((1+k)^(n+1) ))(−1)^k e^(−y) dy  =Γ(n+1)Σ_(k≥0) (−1)^k .(1/((1+k)^(n+1) ))  Σ_(k≥0) (((−1)^k )/((1+k)^(n+1) ))=Σ_(k≥0) (1/((1+2k)^(n+1) ))−(1/((2+2k)^(n+1) ))=(1−(1/2^n ))ζ(n+1)  =Γ(n+1)(1−(1/2^n ))ζ(n+1)  =Γ(n+1){2−(1/2^n )}ζ(n+1)=∫_0 ^(+∞) (x^n /(sh(x)))dx
0+2xnexdx(ex1)(ex+1)=0+xndxex1+0+xnex+1dx=0+xnex1exdx=0+xnk0e(k+1)xdx+0+xn.k0(1)ke(1+k)xdx=k00+xne(k+1)xdx=k00+yn(k+1)n+1eydy=Γ(n+1)ζ(n+1)0+xn.k0(1)ke(1+k)xdx=k00+yn(1+k)n+1(1)keydy=Γ(n+1)k0(1)k.1(1+k)n+1k0(1)k(1+k)n+1=k01(1+2k)n+11(2+2k)n+1=(112n)ζ(n+1)=Γ(n+1)(112n)ζ(n+1)=Γ(n+1){212n}ζ(n+1)=0+xnsh(x)dx
Commented by abdomathmax last updated on 18/Mar/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 18/Mar/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *