Menu Close

calculate-0-x-sin-2x-x-2-4-dx-




Question Number 35217 by abdo.msup.com last updated on 16/May/18
calculate ∫_0 ^∞   ((x sin(2x))/(x^2  +4))dx
calculate0xsin(2x)x2+4dx
Commented by prof Abdo imad last updated on 20/May/18
let put I = ∫_0 ^∞     ((x sin(2x))/(x^2  +4))dx  2I = ∫_(−∞) ^(+∞)     ((x sin(2x))/(x^2  +4))dx= Im( ∫_(−∞) ^(+∞)   ((xe^(i2x) )/(x^2  +4)))dx  let consider the compolex finction  ϕ(z) =  ((z e^(i2z) )/(z^2  +4))  ϕ(z) = ((z e^(i2z) )/((z −2i)(z+2i))) so the poles of ϕ are  2i and −2i  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Res(ϕ,2i)  Res(ϕ,2i) =lim_(z→2i) (z−2i)ϕ(z)  = (((2i) e^(2i(2i)) )/(4i)) = (1/2) e^(−4)  ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ (e^(−4) /2) = i π e^(−4 )   ⇒  2 I = π e^(−4)   ⇒  I  = (π/2) e^(−4)   ★ I = (π/2) e^(−4)  ★
letputI=0xsin(2x)x2+4dx2I=+xsin(2x)x2+4dx=Im(+xei2xx2+4)dxletconsiderthecompolexfinctionφ(z)=zei2zz2+4φ(z)=zei2z(z2i)(z+2i)sothepolesofφare2iand2i+φ(z)dz=2iπRes(φ,2i)Res(φ,2i)=limz2i(z2i)φ(z)=(2i)e2i(2i)4i=12e4+φ(z)dz=2iπe42=iπe42I=πe4I=π2e4I=π2e4

Leave a Reply

Your email address will not be published. Required fields are marked *