calculate-1-1-ln-x-2-x-4-2-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 47248 by maxmathsup by imad last updated on 06/Nov/18 calculate∫−11ln(x+2)(x+4)2−1dx Commented by maxmathsup by imad last updated on 16/Nov/18 letA=∫−11ln(x+2)(x+4)2−1dx⇒A=x+2=t∫13ln(t)(t+2)2−1dt=∫13ln(t)(t+1)(t+3)dt=12∫13{1t+1−1t+3}ln(t)dt=12∫13ln(t)t+1dt−12∫13ln(t)t+3dtletdetermine∫ln(x)x+1dxthecalculatorgive∫ln(x)x+1dx=ln(x)ln(x+1)+Li2(−x)⇒∫13ln(t)t+1dt=[ln(t)ln(t+1)+Li2(−t)]13=2ln(3)ln(2)+Li2(−3)−Li2(−1)also∫ln(x)x+3dx=ln(x)ln(x3+1)+Li2(−x3)⇒∫13ln(x)x+3=[ln(x)ln(x3+1)+Li2(−x3)]13=ln(3)ln(2)+Li2(−1)−Li2(−13)…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: without-L-Hopital-lim-x-pi-cos-x-2-x-pi-Next Next post: Question-47250 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.