Menu Close

calculate-1-1-x-4-x-2-1-2-e-x-e-x-1-dx-




Question Number 57421 by Abdo msup. last updated on 03/Apr/19
calculate  ∫_(−1) ^1    (((x^4  +x^2  +1)^2  +e^x )/(e^x  +1))dx
calculate11(x4+x2+1)2+exex+1dx
Answered by einsteindrmaths@hotmail.fr last updated on 04/Apr/19
=∫_(−1)  ^1 (((x^4 +x^2 +1)^2 +e^x )/(e^x +1))dx=∫_(−1)  ^1 (((x^4 +x^2 +1)^2 )/(e^x +1))dx+∫_(−1) ^1 (e^x /(e^x +1))dx  the seconde integral is easy to evaluat   ∫(e^x /(e^x +1))dx=ln(e^x +1)+c    lets find ∫_(−1) ^1 (((x^4 +x^2 +1)^2 )/(e^x +1))dx=∫_(−1) ^0 (((x^4 +x^2 +1)^2 )/(e^x +1))dx+∫_0 ^1 (((x^4 +x^2 +1)^4 )/(e^x +1))dx  we put y=−x in the firste we get ∫_0 ^1 (((x^4 +x^2 +1)^2 )/(e^(−y) +1))dy+∫_0 ^1 (((x^4 +x^2 +1)^2 )/(e^x +1))dx  =∫_0 ^1  [  (((x^4 +x^2 +1)^2 )/(e^x +1))+(((x^4 +x^2 +1)^2 )/(e^(−x) +1)) ]  dx=∫_0 ^1 (x^4 +x^2 +1)^2 dx=∫_0 ^1 (x^8 +2x^6 +3x^4 +2x^2 +1)dx  easy to evaluat
=11(x4+x2+1)2+exex+1dx=11(x4+x2+1)2ex+1dx+11exex+1dxthesecondeintegraliseasytoevaluatexex+1dx=ln(ex+1)+cletsfind11(x4+x2+1)2ex+1dx=01(x4+x2+1)2ex+1dx+10(x4+x2+1)4ex+1dxweputy=xinthefirsteweget01(x4+x2+1)2ey+1dy+01(x4+x2+1)2ex+1dx=10[(x4+x2+1)2ex+1+(x4+x2+1)2ex+1]dx=01(x4+x2+1)2dx=10(x8+2x6+3x4+2x2+1)dxeasytoevaluat

Leave a Reply

Your email address will not be published. Required fields are marked *