Menu Close

calculate-1-2-0-x-1-x-2-y-2-3-2-dydx-




Question Number 64904 by mathmax by abdo last updated on 23/Jul/19
calculate ∫_1 ^2  ∫_0 ^x   (1/((x^2  +y^2 )^(3/2) ))dydx
calculate120x1(x2+y2)32dydx
Commented by ~ À ® @ 237 ~ last updated on 23/Jul/19
le domaine d integration D ={(x .  y)  / 1<x<2    0<y<x}  en posant x=u et y=utanv     on a J(x  y)=utanv(1+tan^2 v)  D={(u. utanv)/ 1<u<2  et 0<tanv<1}     ={(u. utanv)/  1<u<2 et 0<v<(π/4) }  on obtient alors   I= ∫_1 ^2 ∫_0 ^(π/4)  ((utanv(1+tan^2 v)dudv)/(((√((u^2 +u^2 tan^2 v))))^3 ))    =∫_1 ^2 (1/u^2 )du  ∫_0 ^(π/4) ((tanv(1+tan^2 v)dv)/((1+tan^2 v)^(3/2) ))    =[−(1/u)]_1 ^2  [(1/2) ((−1)/(((3/2)−1)(1+tan^2 v)^(((3/2)−1)) ))]_0 ^(π/4)   =  = (((2−(√2)))/4)
ledomainedintegrationD={(x.y)/1<x<20<y<x}enposantx=uety=utanvonaJ(xy)=utanv(1+tan2v)D={(u.utanv)/1<u<2et0<tanv<1}={(u.utanv)/1<u<2et0<v<π4}onobtientalorsI=120π4utanv(1+tan2v)dudv((u2+u2tan2v))3=121u2du0π4tanv(1+tan2v)dv(1+tan2v)32Missing \left or extra \right==(22)4
Commented by mathmax by abdo last updated on 23/Jul/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *