calculate-1-2-1-dx-4x-2-1-4x-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42804 by maxmathsup by imad last updated on 02/Sep/18 calculate∫121dx4x2−1+4x2+1 Commented by maxmathsup by imad last updated on 03/Sep/18 letI=∫121dx4x2−1+4x2+1I=2x=u∫12du2{u2−1+u2+1}⇒2I=∫12u2+1−u2−12du⇒4I=∫12u2+1du−∫12u2−1dubut∫121+u2du=u=sh(x)∫ln(1+2)ln(2+5)ch(x)ch(x)dx=∫ln(1+2)ln(2+5)1+ch(2x)2dx=12{ln(2+5)−ln(1+2)}+14[sh(2x)]ln(1+2)ln−2+5)=12{ln(2+5)−ln(1+2)}+14[e2x−e−2x2]ln(1+2)ln(2+5)=12{ln(2+5)−ln(1+2)}+18{(2+5)2−(2+5)−2−(1+2)2+(1+2)−2}alsowehave∫12u2−1du=u=ch(x)∫0ln(2+3)sh(x)sh(x+dx=12∫0ln(2+3)(ch(2x)−1)dx=−12ln(2+3)+14[sh(2x)]0ln(2+3)=−12ln(2+3)+18[e2x−e−2x]0ln(2+3)=−12ln(2+3)+18{(2+3)2−(2+3)−2}sothevalueofIisdetermined. Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18 =12∫121(4x2+1)−(4x2−1)4x2+1+4x2−1dx=12∫1214x2+1−4x2−1dx=∫121x2+122−x2−122dxnowuseformula∫x2+a2and∫x2−a2dx∣xx2+142+1222ln(x+x2+14)−xx2−142+1222ln(x+x2−14)∣121 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-x-2-1-1-x-1-x-dx-Next Next post: calculate-lim-n-S-n-with-S-n-1-n-4-k-1-n-k-3-1-k-n-2-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.