Menu Close

calculate-1-2-1-dx-4x-2-1-4x-2-1-




Question Number 42804 by maxmathsup by imad last updated on 02/Sep/18
calculate  ∫_(1/2) ^1      (dx/( (√(4x^2  −1)) +(√(4x^2  +1))))
calculate121dx4x21+4x2+1
Commented by maxmathsup by imad last updated on 03/Sep/18
let I = ∫_(1/2) ^1    (dx/( (√(4x^2 −1)) +(√(4x^2 +1))))  I =_(2x=u)     ∫_1 ^2           (du/(2{ (√(u^2 −1)) +(√(u^2 +1})))) ⇒2I = ∫_1 ^2   (((√(u^2 +1))−(√(u^2 −1)))/2)  du ⇒  4I = ∫_1 ^2 (√(u^2 +1))du −∫_1 ^2 (√(u^2 −1))du   but  ∫_1 ^2  (√( 1+u^2 ))du  =_(u=sh(x))    ∫_(ln(1+(√2))) ^(ln(2 +(√5)))    ch(x)ch(x)dx =∫_(ln(1+(√2))) ^(ln(2+(√5)))  ((1+ch(2x))/2)dx  =(1/2) { ln(2+(√5))−ln(1+(√2))} +(1/4)[ sh(2x)]_(ln(1+(√2))) ^(ln−2+(√5)))   =(1/2){ln(2+(√5))−ln(1+(√2))} +(1/4)[((e^(2x)  −e^(−2x) )/2)]_(ln(1+(√2))) ^(ln(2+(√5)))   =(1/2){ln(2+(√5))−ln(1+(√2))} +(1/8){(2+(√5))^2  −(2+(√5))^(−2)  −(1+(√2))^2  +(1+(√2))^(−2) }  also we have ∫_1 ^2 (√(u^2 −1))du =_(u=ch(x))       ∫_0 ^(ln(2+(√3))) sh(x)sh(x+dx   =(1/2) ∫_0 ^(ln(2+(√3))) (ch(2x)−1)dx =−(1/2)ln(2+(√3)) +(1/4) [sh(2x)]_0 ^(ln(2+(√3)))   =−(1/2)ln(2+(√3)) +(1/8)[ e^(2x)  −e^(−2x) ]_0 ^(ln(2+(√3)))   =−(1/2)ln(2+(√3)) +(1/8){ (2+(√3))^2  −(2+(√3))^(−2) } so the value of I is determined.
letI=121dx4x21+4x2+1I=2x=u12du2{u21+u2+1}2I=12u2+1u212du4I=12u2+1du12u21dubut121+u2du=u=sh(x)ln(1+2)ln(2+5)ch(x)ch(x)dx=ln(1+2)ln(2+5)1+ch(2x)2dx=12{ln(2+5)ln(1+2)}+14[sh(2x)]ln(1+2)ln2+5)=12{ln(2+5)ln(1+2)}+14[e2xe2x2]ln(1+2)ln(2+5)=12{ln(2+5)ln(1+2)}+18{(2+5)2(2+5)2(1+2)2+(1+2)2}alsowehave12u21du=u=ch(x)0ln(2+3)sh(x)sh(x+dx=120ln(2+3)(ch(2x)1)dx=12ln(2+3)+14[sh(2x)]0ln(2+3)=12ln(2+3)+18[e2xe2x]0ln(2+3)=12ln(2+3)+18{(2+3)2(2+3)2}sothevalueofIisdetermined.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
=(1/2)∫_(1/2) ^1  (((4x^2 +1)−(4x^2 −1))/( (√(4x^2 +1)) +(√(4x^2 −1)) )) dx  =(1/2)∫_(1/2) ^1 (√(4x^2 +1))  −(√(4x^2 −1))  dx  =∫_(1/2) ^1  (√(x^2 +(1/2^2 )))  −(√(x^2 −(1/2^2 )))  dx  now use formula  ∫(√(x^2 +a^2 ))  and∫(√(x^2 −a^2 )) dx  ∣((x(√(x^2 +(1/4))))/2)+((1/2^2 )/2)ln(x+(√(x^2 +(1/4))) )−((x(√(x^2 −(1/4))))/2)+((1/2^2 )/2)ln(x+(√(x^2 −(1/4))) )∣_(1/2) ^1
=12121(4x2+1)(4x21)4x2+1+4x21dx=121214x2+14x21dx=121x2+122x2122dxnowuseformulax2+a2andx2a2dxxx2+142+1222ln(x+x2+14)xx2142+1222ln(x+x214)121

Leave a Reply

Your email address will not be published. Required fields are marked *