Menu Close

calculate-1-2-1-x-arctan-1-x-2-dx-




Question Number 51990 by maxmathsup by imad last updated on 01/Jan/19
calculate ∫_(1/2) ^1  x arctan((√(1−x^2 )))dx
$${calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{x}\:{arctan}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$
Answered by peter frank last updated on 01/Jan/19
by part  v=(x^2 /2)  u=tan^(−1) ((√(1−x^2 )) )  (du/dx)=−((2x)/(2−x^2 ))  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +∫(x^3 /(2−x^2 ))dx  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +∫((2x−x^3 +2x)/(2−x^2 ))  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +ln(2−x^2 )+C  ....
$${by}\:{part} \\ $$$${v}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${u}=\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right) \\ $$$$\frac{{du}}{{dx}}=−\frac{\mathrm{2}{x}}{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:+\int\frac{{x}^{\mathrm{3}} }{\mathrm{2}−{x}^{\mathrm{2}} }{dx} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:+\int\frac{\mathrm{2}{x}−{x}^{\mathrm{3}} +\mathrm{2}{x}}{\mathrm{2}−{x}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)\:+{ln}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)+{C} \\ $$$$…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *