Menu Close

calculate-1-2-1-x-arctan-1-x-2-dx-




Question Number 51990 by maxmathsup by imad last updated on 01/Jan/19
calculate ∫_(1/2) ^1  x arctan((√(1−x^2 )))dx
calculate121xarctan(1x2)dx
Answered by peter frank last updated on 01/Jan/19
by part  v=(x^2 /2)  u=tan^(−1) ((√(1−x^2 )) )  (du/dx)=−((2x)/(2−x^2 ))  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +∫(x^3 /(2−x^2 ))dx  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +∫((2x−x^3 +2x)/(2−x^2 ))  (x^2 /2)tan^(−1) ((√(1−x^2 )) ) +ln(2−x^2 )+C  ....
bypartv=x22u=tan1(1x2)dudx=2x2x2x22tan1(1x2)+x32x2dxx22tan1(1x2)+2xx3+2x2x2x22tan1(1x2)+ln(2x2)+C.

Leave a Reply

Your email address will not be published. Required fields are marked *