calculate-1-2-5-4-x-3-2-x-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42802 by maxmathsup by imad last updated on 02/Sep/18 calculate∫1254x32+x−x2dx Commented by maxmathsup by imad last updated on 05/Sep/18 letA=∫1254x32+x−x2dx⇒A=∫1254x3−x2+x+2dxwehave−x2+x+2=−(x2−x−2)=−(x2−212x+14−14−2)=−{(x−12)2−94}=94−(x−12)2⇒A=∫1254x394−(x−12)2dx=x−12=32sint∫0π6(12+32sint)332cost32costdt=∫0π6(3sint+1)3dt=∫0π6(27sin3t+27sin2t+9sint+1)dt=27∫0π6sin3tdt+27∫0π6sin2tdt+9∫0π6sintdt+π6but∫0π6sintdt=[−cost]0π6=1−32∫0π6sin2tdt=12∫0π6(1−cos(2t))dt=π12−14[sin(2t)]0π6=π12−1432=π12−38wehavesin3t={eit−e−it2i}3=−18i{∑k=03C3keikt(−1)3−ke−i(3−k)t}=i8{−e−i3t+3eite−i2t−3ei2te−it+ei3t}=i8{ei3t−e−i3t−3(eit−e−it)}=i8{2isin(3t)−6isin(t)}=−14sin(3t)+34sin(t)⇒∫0π6sin3tdt=34∫0π6sin(t)dt−14∫0π6sin(3t)dt=−34[cost]0π6+112[cos(3t)]0π6=−34(32−1)+112(−1)=34−338−112sothevalueofAisknown. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-173874Next Next post: find-0-1-x-2-1-1-x-1-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.