Menu Close

calculate-1-2-5-4-x-3-2-x-x-2-dx-




Question Number 42802 by maxmathsup by imad last updated on 02/Sep/18
calculate  ∫_(1/2) ^(5/4)    (x^3 /( (√(2+x−x^2 ))))dx
calculate1254x32+xx2dx
Commented by maxmathsup by imad last updated on 05/Sep/18
let A = ∫_(1/2) ^(5/4)        (x^3 /( (√(2+x−x^2 ))))dx⇒A = ∫_(1/2) ^(5/4)    (x^3 /( (√(−x^2 +x+2))))dx  we have −x^2  +x+2 =−(x^2 −x−2) =−(x^2 −2(1/2)x +(1/4)−(1/4)−2)  =−{(x−(1/2))^2 −(9/4)}=(9/4) −(x−(1/2))^2  ⇒A = ∫_(1/2) ^(5/4)      (x^3 /( (√((9/4)−(x−(1/2))^2 ))))dx  =_(x−(1/2) =(3/2)sint)      ∫_0 ^(π/6)      ((((1/2)+(3/2)sint)^3 )/((3/2) cost)) (3/2) cost dt  = ∫_0 ^(π/6)  (3sint +1)^3  dt  =∫_0 ^(π/6)   (27sin^3 t   +27sin^2 t +9sint +1)dt  =27 ∫_0 ^(π/6)  sin^3 t dt +27 ∫_0 ^(π/6)  sin^2 t dt  +9 ∫_0 ^(π/6)  sint dt +(π/6) but  ∫_0 ^(π/6)  sint dt =[−cost]_0 ^(π/6)  =1−((√3)/2)  ∫_0 ^(π/6)  sin^2 t dt =(1/2) ∫_0 ^(π/6)  (1−cos(2t))dt=(π/(12)) −(1/4)[sin(2t)]_0 ^(π/6)   =(π/(12)) −(1/4) ((√3)/2) =(π/(12)) −((√3)/8)  we have sin^3 t ={((e^(it) −e^(−it) )/(2i))}^3   =−(1/(8i)){  Σ_(k=0) ^3  C_3 ^k   e^(ikt)   (−1)^(3−k)  e^(−i(3−k)t) }  =(i/8){  −e^(−i3t)   +3 e^(it)  e^(−i2t)  − 3 e^(i2t)  e^(−it)   +e^(i3t) }  =(i/8){e^(i3t)  −e^(−i3t)  −3(e^(it) −e^(−it) )} =(i/8){2i sin(3t) −6i sin(t)}  =−(1/4)sin(3t) +(3/4) sin(t) ⇒ ∫_0 ^(π/6)  sin^3 t dt =(3/4) ∫_0 ^(π/6)  sin(t)dt−(1/4) ∫_0 ^(π/6)  sin(3t)dt  =−(3/4)[cost]_0 ^(π/6)    +(1/(12))[ cos(3t)]_0 ^(π/6)   =−(3/4)(((√3)/2)−1) +(1/(12))( −1)  =(3/4) −((3(√3))/8) −(1/(12))   so the value of A is known .
letA=1254x32+xx2dxA=1254x3x2+x+2dxwehavex2+x+2=(x2x2)=(x2212x+14142)={(x12)294}=94(x12)2A=1254x394(x12)2dx=x12=32sint0π6(12+32sint)332cost32costdt=0π6(3sint+1)3dt=0π6(27sin3t+27sin2t+9sint+1)dt=270π6sin3tdt+270π6sin2tdt+90π6sintdt+π6but0π6sintdt=[cost]0π6=1320π6sin2tdt=120π6(1cos(2t))dt=π1214[sin(2t)]0π6=π121432=π1238wehavesin3t={eiteit2i}3=18i{k=03C3keikt(1)3kei(3k)t}=i8{ei3t+3eitei2t3ei2teit+ei3t}=i8{ei3tei3t3(eiteit)}=i8{2isin(3t)6isin(t)}=14sin(3t)+34sin(t)0π6sin3tdt=340π6sin(t)dt140π6sin(3t)dt=34[cost]0π6+112[cos(3t)]0π6=34(321)+112(1)=34338112sothevalueofAisknown.

Leave a Reply

Your email address will not be published. Required fields are marked *