Menu Close

calculate-1-2-dx-1-x-4-




Question Number 43675 by maxmathsup by imad last updated on 13/Sep/18
calculate     ∫_1 ^2    (dx/(1+x^4 )) .
calculate12dx1+x4.
Commented by maxmathsup by imad last updated on 15/Sep/18
we have proved that   ∫ (dx/(1+x^4 )) =(1/(4(√2)))ln∣((x^2 −(√2)x+1)/(x^2  +(√2)x+1))∣ +(1/(2(√2))){ arctan(x(√2)−1)+arctan(x(√2)+1)} ⇒  ∫_1 ^2   (dx/(1+x^4 )) =(1/(4(√2)))[ln∣((x^2 −(√2)x +1)/(x^2  +(√2)x+1))∣_1 ^2  +(1/(2(√2)))[arctan(x(√2)−1)+arctan(x(√2)+1)]_1 ^2   =(1/(4(√2))){ln(((5−2(√2))/(5+2(√2))))−ln(((2−(√2))/(2+(√2))))}+(1/(2(√2))){arctan(2(√2)−1)+arctan(2(√2)+1)  −arctan((√2)−1)−arctan((√2) +1)} .
wehaveprovedthatdx1+x4=142lnx22x+1x2+2x+1+122{arctan(x21)+arctan(x2+1)}12dx1+x4=142[lnx22x+1x2+2x+112+122[arctan(x21)+arctan(x2+1)]12=142{ln(5225+22)ln(222+2)}+122{arctan(221)+arctan(22+1)arctan(21)arctan(2+1)}.

Leave a Reply

Your email address will not be published. Required fields are marked *