Menu Close

calculate-1-2-dx-ch-2-x-sh-2-x-




Question Number 115366 by Bird last updated on 25/Sep/20
calculate ∫_(−1) ^2  (dx/(ch^2 x +sh^2 x))
calculate12dxch2x+sh2x
Answered by MJS_new last updated on 25/Sep/20
∫(dx/(cosh^2  x +sinh^2  x))=       [t=e^(2x)  → dx=(dt/(2e^(2x) ))]  =∫(dt/(t^2 +1))=arctan t =  =arctan e^(2x)  +C  ∫_(−1) ^2 (dx/(cosh^2  x +sinh^2  x))=arctan e^4  −arctan e^(−2)
dxcosh2x+sinh2x=[t=e2xdx=dt2e2x]=dtt2+1=arctant==arctane2x+C21dxcosh2x+sinh2x=arctane4arctane2
Commented by mathmax by abdo last updated on 25/Sep/20
thank you sir mjs
thankyousirmjs
Answered by mathmax by abdo last updated on 25/Sep/20
let I =∫_(−1) ^2  (dx/(ch^2 x +sh^2 x)) ⇒I =∫_(−1) ^2  (dx/(((1+ch(2x))/2)+((ch(2x)−1)/2)))  =∫_(−1) ^2   (dx/(ch(2x))) =2∫_(−1) ^2  (dx/(e^(2x) +e^(−2x) )) =_(e^(2x)  =t)  2 ∫_e^(−2)  ^e^(−4)     (1/(t+t^(−1) ))×(dt/(2t))  =∫_e^(−2)  ^e^(−4)    (dt/(t^2  +1)) =arctan((1/e^4 ))−arctan((1/e^2 ))  =(π/2) −arctan(e^4 )−((π/2)−arctan(e^2 )) =arctan(e^2 )−arctan(e^4 )
letI=12dxch2x+sh2xI=12dx1+ch(2x)2+ch(2x)12=12dxch(2x)=212dxe2x+e2x=e2x=t2e2e41t+t1×dt2t=e2e4dtt2+1=arctan(1e4)arctan(1e2)=π2arctan(e4)(π2arctan(e2))=arctan(e2)arctan(e4)

Leave a Reply

Your email address will not be published. Required fields are marked *